1
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
2
|
Melnikova L, Molodina V, Georgiev P, Golovnin A. Development of a New Model System to Study Long-Distance Interactions Supported by Architectural Proteins. Int J Mol Sci 2024; 25:4617. [PMID: 38731837 PMCID: PMC11083095 DOI: 10.3390/ijms25094617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| |
Collapse
|
3
|
Lizana L, Schwartz YB. The scales, mechanisms, and dynamics of the genome architecture. SCIENCE ADVANCES 2024; 10:eadm8167. [PMID: 38598632 PMCID: PMC11006219 DOI: 10.1126/sciadv.adm8167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Even when split into several chromosomes, DNA molecules that make up our genome are too long to fit into the cell nuclei unless massively folded. Such folding must accommodate the need for timely access to selected parts of the genome by transcription factors, RNA polymerases, and DNA replication machinery. Here, we review our current understanding of the genome folding inside the interphase nuclei. We consider the resulting genome architecture at three scales with a particular focus on the intermediate (meso) scale and summarize the insights gained from recent experimental observations and diverse computational models.
Collapse
Affiliation(s)
- Ludvig Lizana
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | | |
Collapse
|
4
|
Kamalyan S, Kyrchanova O, Klimenko N, Babosha V, Vasileva Y, Belova E, Fursenko D, Maksimenko O, Georgiev P. The N-terminal dimerization domains of human and Drosophila CTCF have similar functionality. Epigenetics Chromatin 2024; 17:9. [PMID: 38561749 PMCID: PMC10983669 DOI: 10.1186/s13072-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.
Collapse
Affiliation(s)
- Sofia Kamalyan
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Yulia Vasileva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Dariya Fursenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia.
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Tendolkar A, Mazo-Vargas A, Livraghi L, Hanly JJ, Van Horne KC, Gilbert LE, Martin A. Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings. eLife 2024; 12:RP90846. [PMID: 38261357 PMCID: PMC10945631 DOI: 10.7554/elife.90846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Hox gene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here, we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.
Collapse
Affiliation(s)
- Amruta Tendolkar
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Luca Livraghi
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Kelsey C Van Horne
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas – AustinAustinUnited States
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| |
Collapse
|
6
|
Golovnin A, Melnikova L, Babosha V, Pokholkova GV, Slovohotov I, Umnova A, Maksimenko O, Zhimulev IF, Georgiev P. The N-Terminal Part of Drosophila CP190 Is a Platform for Interaction with Multiple Architectural Proteins. Int J Mol Sci 2023; 24:15917. [PMID: 37958900 PMCID: PMC10648081 DOI: 10.3390/ijms242115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
CP190 is a co-factor in many Drosophila architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo. The best-characterized architectural proteins with insulator functions, Pita, Su(Hw), and dCTCF, interacted predominantly with the BTB domain of CP190. Due to the difficulty of mutating the BTB domain, we obtained a transgenic line expressing a chimeric CP190 with the BTB domain of the human protein Kaiso. Another group of architectural proteins, M1BP, Opbp, and ZIPIC, interacted with one or both of the highly conserved regions in the N-terminal part of CP190. Transgenic lines of D. melanogaster expressing CP190 mutants with a deletion of each of these domains were obtained. The results showed that these mutant proteins only partially compensated for the functions of CP190, weakly binding to selective chromatin sites. Further analysis confirmed the essential role of these domains in recruitment to regulatory regions associated with architectural proteins. We also found that the N-terminal of CP190 was sufficient for recruiting Z4 and Chromator proteins and successfully achieving chromatin opening. Taken together, our results and the results of previous studies showed that the N-terminal region of CP190 is a platform for simultaneous interaction with various DNA-binding architectural proteins and transcription complexes.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Galina V. Pokholkova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Ivan Slovohotov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Umnova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Igor F. Zhimulev
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
7
|
Melnikova L, Molodina V, Babosha V, Kostyuchenko M, Georgiev P, Golovnin A. The MADF-BESS Protein CP60 Is Recruited to Insulators via CP190 and Has Redundant Functions in Drosophila. Int J Mol Sci 2023; 24:15029. [PMID: 37834476 PMCID: PMC10573801 DOI: 10.3390/ijms241915029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize. In this study, we show that the conserved CP60 region adjacent to MADF is responsible for interacting with CP190. In contrast to the well-characterized MADF-BESS transcriptional activator Adf-1, CP60 is recruited to most chromatin sites through its interaction with CP190, and the MADF domain is likely involved in protein-protein interactions but not in DNA binding. The deletion of the Map60 gene showed that CP60 is not an essential protein, despite the strong and ubiquitous expression of CP60 at all stages of Drosophila development. Although CP60 is a stable component of the Su(Hw) insulator complex, the inactivation of CP60 does not affect the enhancer-blocking activity of the Su(Hw)-dependent gypsy insulator. Overall, our results indicate that CP60 has an important but redundant function in transcriptional regulation as a partner of the CP190 protein.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| |
Collapse
|
8
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary bypass activity in the abdominal-B region of the Drosophila bithorax complex is position dependent and regulated. Open Biol 2023; 13:230035. [PMID: 37582404 PMCID: PMC10427195 DOI: 10.1098/rsob.230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Expression of Abdominal-B (Abd-B) in abdominal segments A5-A8 is controlled by four regulatory domains, iab-5-iab-8. Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements (Mcp, Fab-7, Fab-7 and Fab-8). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can 'jump over' intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary Bypass Activity in the Abdominal-B Region of the Drosophila Bithorax Complex is Position Dependent and Regulated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543971. [PMID: 37333165 PMCID: PMC10274778 DOI: 10.1101/2023.06.06.543971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Expression of Abdominal-B ( Abd-B ) in abdominal segments A5 - A8 is controlled by four regulatory domains, iab-5 - iab-8 . Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements ( Mcp , Fab-7 , Fab-7 and Fab-8 ). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can "jump over" intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation. Summary Statement Boundaries separating Abd-B regulatory domains block crosstalk between domains and mediate their interactions with Abd-B . The latter function is location but not orientation dependent.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
10
|
Kahn TG, Savitsky M, Kuong C, Jacquier C, Cavalli G, Chang JM, Schwartz YB. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. SCIENCE ADVANCES 2023; 9:eade0090. [PMID: 36735780 PMCID: PMC9897668 DOI: 10.1126/sciadv.ade0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Drosophila insulators were the first DNA elements found to regulate gene expression by delimiting chromatin contacts. We still do not know how many of them exist and what impact they have on the Drosophila genome folding. Contrary to vertebrates, there is no evidence that fly insulators block cohesin-mediated chromatin loop extrusion. Therefore, their mechanism of action remains uncertain. To bridge these gaps, we mapped chromatin contacts in Drosophila cells lacking the key insulator proteins CTCF and Cp190. With this approach, we found hundreds of insulator elements. Their study indicates that Drosophila insulators play a minor role in the overall genome folding but affect chromatin contacts locally at many loci. Our observations argue that Cp190 promotes cobinding of other insulator proteins and that the model, where Drosophila insulators block chromatin contacts by forming loops, needs revision. Our insulator catalog provides an important resource to study mechanisms of genome folding.
Collapse
Affiliation(s)
- Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Chikuan Kuong
- Department of Computer Science, National Chengchi University, Taipei City, Taiwan
| | | | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, Montpellier, France
| | - Jia-Ming Chang
- Department of Computer Science, National Chengchi University, Taipei City, Taiwan
| | | |
Collapse
|
11
|
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int J Mol Sci 2023; 24:ijms24032855. [PMID: 36769179 PMCID: PMC9917889 DOI: 10.3390/ijms24032855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.
Collapse
|
12
|
Andreyeva EN, Emelyanov AV, Nevil M, Sun L, Vershilova E, Hill CA, Keogh MC, Duronio RJ, Skoultchi AI, Fyodorov DV. Drosophila SUMM4 complex couples insulator function and DNA replication control. eLife 2022; 11:e81828. [PMID: 36458689 PMCID: PMC9917439 DOI: 10.7554/elife.81828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. Drosophila SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes. SUUR negatively regulates DNA replication fork progression; however, its mechanism of action remains obscure. Here, we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)-67.2. Mod(Mdg4) stimulates SUUR ATPase activity and is required for a normal spatiotemporal distribution of SUUR in vivo. SUUR and Mod(Mdg4)-67.2 together mediate the activities of gypsy insulator that prevent certain enhancer-promoter interactions and establish euchromatin-heterochromatin barriers in the genome. Furthermore, SuUR or mod(mdg4) mutations reverse underreplication of intercalary heterochromatin. Thus, SUMM4 can impart late replication of intercalary heterochromatin by attenuating the progression of replication forks through euchromatin/heterochromatin boundaries. Our findings implicate a SNF2 family ATP-dependent motor protein SUUR in the insulator function, reveal that DNA replication can be delayed by a chromatin barrier, and uncover a critical role for architectural proteins in replication control. They suggest a mechanism for the establishment of late replication that does not depend on an asynchronous firing of late replication origins.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | | | - Markus Nevil
- UNC-SPIRE, University of North CarolinaChapel HillUnited States
| | - Lu Sun
- EpiCypherDurhamUnited States
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillUnited States
- Department of Biology, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
13
|
Romanov SE, Shloma VV, Koryakov DE, Belyakin SN, Laktionov PP. Insulator Protein CP190 Regulates Expression оf Spermatocyte Differentiation Genes in Drosophila melanogaster Male Germline. Mol Biol 2022. [DOI: 10.1134/s0026893323010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Kaushal A, Dorier J, Wang B, Mohana G, Taschner M, Cousin P, Waridel P, Iseli C, Semenova A, Restrepo S, Guex N, Aiden EL, Gambetta MC. Essential role of Cp190 in physical and regulatory boundary formation. SCIENCE ADVANCES 2022; 8:eabl8834. [PMID: 35559678 PMCID: PMC9106302 DOI: 10.1126/sciadv.abl8834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Boundaries in animal genomes delimit contact domains with enhanced internal contact frequencies and have debated functions in limiting regulatory cross-talk between domains and guiding enhancers to target promoters. Most mammalian boundaries form by stalling of chromosomal loop-extruding cohesin by CTCF, but most Drosophila boundaries form CTCF independently. However, how CTCF-independent boundaries form and function remains largely unexplored. Here, we assess genome folding and developmental gene expression in fly embryos lacking the ubiquitous boundary-associated factor Cp190. We find that sequence-specific DNA binding proteins such as CTCF and Su(Hw) directly interact with and recruit Cp190 to form most promoter-distal boundaries. Cp190 is essential for early development and prevents regulatory cross-talk between specific gene loci that pattern the embryo. Cp190 was, in contrast, dispensable for long-range enhancer-promoter communication at tested loci. Cp190 is thus currently the major player in fly boundary formation and function, revealing that diverse mechanisms evolved to partition genomes into independent regulatory domains.
Collapse
Affiliation(s)
- Anjali Kaushal
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bihan Wang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Giriram Mohana
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anastasiia Semenova
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Restrepo
- arcoris bio AG, Lüssirainstrasse 52, 6300 Zug, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- National Institute of Genetics, 1111 Yaya, Mishima, Shizuoka 411-8540, Japan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 20120, China
| | | |
Collapse
|
15
|
Kyrchanova OV, Postika NY, Sokolov VV, Georgiev PG. Fragments of the Fab-3 and Fab-4 Boundaries of the Drosophila melanogaster Bithorax Complex That Include CTCF Sites Are not Effective Insulators. DOKL BIOCHEM BIOPHYS 2022; 502:21-24. [PMID: 35275301 PMCID: PMC8917101 DOI: 10.1134/s1607672922010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
The segment-specific regulatory domains of the Bithorax complex (BX-C), which consists of three homeotic genes Ubx, abd-A and Abd-B, are separated by boundaries that function as insulators. Most of the boundaries contain binding sites for the architectural protein CTCF, which is conserved for higher eukaryotes. As was shown previously, the CTCF sites determine the insulator activity of the boundaries of the Abd-B regulatory region. In this study, it was shown that fragments of the Fab-3 and Fab-4 boundaries of the abd-A regulatory region, containing CTCF binding sites, are not effective insulators.
Collapse
Affiliation(s)
- O V Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - N Y Postika
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - V V Sokolov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Torres-Campana D, Horard B, Denaud S, Benoit G, Loppin B, Orsi GA. Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain. PLoS Genet 2022; 18:e1009615. [PMID: 34982772 PMCID: PMC8759638 DOI: 10.1371/journal.pgen.1009615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/14/2022] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
The formation of a diploid zygote is a highly complex cellular process that is entirely controlled by maternal gene products stored in the egg cytoplasm. This highly specialized transcriptional program is tightly controlled at the chromatin level in the female germline. As an extreme case in point, the massive and specific ovarian expression of the essential thioredoxin Deadhead (DHD) is critically regulated in Drosophila by the histone demethylase Lid and its partner, the histone deacetylase complex Sin3A/Rpd3, via yet unknown mechanisms. Here, we identified Snr1 and Mod(mdg4) as essential for dhd expression and investigated how these epigenomic effectors act with Lid and Sin3A to hyperactivate dhd. Using Cut&Run chromatin profiling with a dedicated data analysis procedure, we found that dhd is intriguingly embedded in an H3K27me3/H3K9me3-enriched mini-domain flanked by DNA regulatory elements, including a dhd promoter-proximal element essential for its expression. Surprisingly, Lid, Sin3a, Snr1 and Mod(mdg4) impact H3K27me3 and this regulatory element in distinct manners. However, we show that these effectors activate dhd independently of H3K27me3/H3K9me3, and that dhd remains silent in the absence of these marks. Together, our study demonstrates an atypical and critical role for chromatin regulators Lid, Sin3A, Snr1 and Mod(mdg4) to trigger tissue-specific hyperactivation within a unique heterochromatin mini-domain. Multicellular development depends on a tight control of gene expression in each cell type. This relies on the coordinated activities of nuclear proteins that interact with DNA or its histone scaffold to promote or restrict gene transcription. For example, we previously showed that the histone modifying enzymes Lid and Sin3A/Rpd3 are required in Drosophila ovaries for the massive expression of deadhead (dhd), a gene encoding for a thioredoxin that is essential for fertility. In this paper, we have further identified two additional dhd regulators, Snr1 and Mod(mdg4) and dissected the mechanism behind hyperactivation of this gene. Using the epigenomic profiling method Cut&Run with a dedicated data analysis approach, we unexpectedly found that dhd is embedded in an unusual chromatin mini-domain featuring repressive histone modifications H3K27me3 and H3K9me3 and flanked by two regulatory elements. However, we further showed that Lid, Sin3A, Snr1 and Mod(mdg4) behave like obligatory activators of dhd independently of this mini-domain. Our study unveils how multiple broad-acting epigenomic effectors operate in non-canonical manners to ensure a critical and specialized gene activation event. These findings challenge our knowledge on these regulatory mechanisms and their roles in development and pathology.
Collapse
Affiliation(s)
- Daniela Torres-Campana
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sandrine Denaud
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, Montpellier, France
| | - Gérard Benoit
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- * E-mail: (BL); (GAO)
| | - Guillermo A. Orsi
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- * E-mail: (BL); (GAO)
| |
Collapse
|
17
|
Su(Hw) primes 66D and 7F Drosophila chorion genes loci for amplification through chromatin decondensation. Sci Rep 2021; 11:16963. [PMID: 34417521 PMCID: PMC8379230 DOI: 10.1038/s41598-021-96488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/11/2021] [Indexed: 11/11/2022] Open
Abstract
Suppressor of Hairy wing [Su(Hw)] is an insulator protein that participates in regulating chromatin architecture and gene repression in Drosophila. In previous studies we have shown that Su(Hw) is also required for pre-replication complex (pre-RC) recruitment on Su(Hw)-bound sites (SBSs) in Drosophila S2 cells and pupa. Here, we describe the effect of Su(Hw) on developmentally regulated amplification of 66D and 7F Drosophila amplicons in follicle cells (DAFCs), widely used as models in replication studies. We show Su(Hw) binding co-localizes with all known DAFCs in Drosophila ovaries, whereas disruption of Su(Hw) binding to 66D and 7F DAFCs causes a two-fold decrease in the amplification of these loci. The complete loss of Su(Hw) binding to chromatin impairs pre-RC recruitment to all amplification regulatory regions of 66D and 7F loci at early oogenesis (prior to DAFCs amplification). These changes coincide with a considerable Su(Hw)-dependent condensation of chromatin at 66D and 7F loci. Although we observed the Brm, ISWI, Mi-2, and CHD1 chromatin remodelers at SBSs genome wide, their remodeler activity does not appear to be responsible for chromatin decondensation at the 66D and 7F amplification regulatory regions. We have discovered that, in addition to the CBP/Nejire and Chameau histone acetyltransferases, the Gcn5 acetyltransferase binds to 66D and 7F DAFCs at SBSs and this binding is dependent on Su(Hw). We propose that the main function of Su(Hw) in developmental amplification of 66D and 7F DAFCs is to establish a chromatin structure that is permissive to pre-RC recruitment.
Collapse
|
18
|
Kyrchanova O, Klimenko N, Postika N, Bonchuk A, Zolotarev N, Maksimenko O, Georgiev P. Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194733. [PMID: 34311130 DOI: 10.1016/j.bbagrm.2021.194733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Zolotarev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
19
|
Fujioka M, Nezdyur A, Jaynes JB. An insulator blocks access to enhancers by an illegitimate promoter, preventing repression by transcriptional interference. PLoS Genet 2021; 17:e1009536. [PMID: 33901190 PMCID: PMC8102011 DOI: 10.1371/journal.pgen.1009536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Several distinct activities and functions have been described for chromatin insulators, which separate genes along chromosomes into functional units. Here, we describe a novel mechanism of functional separation whereby an insulator prevents gene repression. When the homie insulator is deleted from the end of a Drosophila even skipped (eve) locus, a flanking P-element promoter is activated in a partial eve pattern, causing expression driven by enhancers in the 3’ region to be repressed. The mechanism involves transcriptional read-through from the flanking promoter. This conclusion is based on the following. Read-through driven by a heterologous enhancer is sufficient to repress, even when homie is in place. Furthermore, when the flanking promoter is turned around, repression is minimal. Transcriptional read-through that does not produce anti-sense RNA can still repress expression, ruling out RNAi as the mechanism in this case. Thus, transcriptional interference, caused by enhancer capture and read-through when the insulator is removed, represses eve promoter-driven expression. We also show that enhancer-promoter specificity and processivity of transcription can have decisive effects on the consequences of insulator removal. First, a core heat shock 70 promoter that is not activated well by eve enhancers did not cause read-through sufficient to repress the eve promoter. Second, these transcripts are less processive than those initiated at the P-promoter, measured by how far they extend through the eve locus, and so are less disruptive. These results highlight the importance of considering transcriptional read-through when assessing the effects of insulators on gene expression. Several distinct activities and functions have been described for chromatin insulators, which are regulatory DNA elements that separate genes along chromosomes into functional units. Here, we describe how insulators can prevent repression of one gene by preventing inappropriate transcription of another gene, without blocking read-through of transcription per se. When the insulator homie is deleted from the end of a transgenic eve locus, a flanking transposable element promoter is activated by eve enhancers, causing repression of the eve promoter. The mechanism involves transcriptional read-through from the flanking promoter, which disrupts normal eve enhancer-promoter activities. When the flanking promoter is turned around, repression of eve is minimal. Thus, transcriptional interference, caused by enhancer capture and read-through when the insulator is removed, represses the eve promoter. These results show a novel role for transcriptional read-through in the effects of insulators on gene expression.
Collapse
Affiliation(s)
- Miki Fujioka
- Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Anastasiya Nezdyur
- Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James B. Jaynes
- Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Galouzis CC, Prud'homme B. Transvection regulates the sex-biased expression of a fly X-linked gene. Science 2021; 371:396-400. [PMID: 33479152 DOI: 10.1126/science.abc2745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Sexual dimorphism in animals results from sex-biased gene expression patterns. These patterns are controlled by genetic sex determination hierarchies that establish the sex of an individual. Here we show that the male-biased wing expression pattern of the Drosophila biarmipes gene yellow, located on the X chromosome, is independent of the fly sex determination hierarchy. Instead, we find that a regulatory interaction between yellow alleles on homologous chromosomes (a process known as transvection) silences the activity of a yellow enhancer functioning in the wing. Therefore, this enhancer can be active in males (XY) but not in females (XX). This transvection-dependent enhancer silencing requires the yellow intron and the chromatin architecture protein Mod(mdg4). Our results suggest that transvection can contribute more generally to the sex-biased expression of X-linked genes.
Collapse
Affiliation(s)
- Charalampos Chrysovalantis Galouzis
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| |
Collapse
|
21
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
22
|
Meyer-Nava S, Nieto-Caballero VE, Zurita M, Valadez-Graham V. Insights into HP1a-Chromatin Interactions. Cells 2020; 9:E1866. [PMID: 32784937 PMCID: PMC7465937 DOI: 10.3390/cells9081866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.
Collapse
Affiliation(s)
| | | | | | - Viviana Valadez-Graham
- Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; (S.M.-N.); (V.E.N.-C.); (M.Z.)
| |
Collapse
|
23
|
Kukushkina IV, Makhnovskii PA, Nefedova LN, Milyaeva PA, Kuzmin IV, Lavrenov AR, Kim AI. Analysis of Transcriptome of Drosophila melanogaster Strains with Disrupted Control of gypsy Retrotransposon Transposition. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci Rep 2020; 10:4793. [PMID: 32179799 PMCID: PMC7075897 DOI: 10.1038/s41598-020-61514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/23/2022] Open
Abstract
Proximity-dependent biotin labelling revealed undescribed participants of the ecdysone response in Drosophila. Two labelling enzymes (BioID2 and APEX2) were fused to EcR or Usp to biotin label the surrounding proteins. The EcR/Usp heterodimer was found to collaborate with nuclear pore subunits, chromatin remodelers, and architectural proteins. Many proteins identified through proximity-dependent labelling with EcR/Usp were described previously as functional components of an ecdysone response, corroborating the potency of this labelling method. A link to ecdysone response was confirmed for some newly discovered regulators by immunoprecipitation of prepupal nuclear extract with anti-EcR antibodies and functional experiments in Drosophila S2 cells. A more in-depth study was conducted to clarify the association of EcR/Usp with one of the detected proteins, CP190, a well-described cofactor of Drosophila insulators. CP190 was found to co-immunoprecipitate with the EcR subunit of EcR/Usp in a 20E-independent manner. ChIP-Seq experiments revealed only partial overlapping between CP190 and EcR bound sites in the Drosophila genome and complete absence of CP190 binding at 20E-dependent enhancers. Analysis of Hi-C data demonstrated an existence of remote interactions between 20E-dependent enhancers and CP190 sites which suggests formation of a protein complex between EcR/Usp and CP190 through the space. Our results support the previous concept that CP190 has a role in stabilization of specific chromatin loops for proper activation of transcription of genes regulated by 20E hormone.
Collapse
|
25
|
Genetic Dissection Reveals the Role of Ash1 Domains in Counteracting Polycomb Repression. G3-GENES GENOMES GENETICS 2019; 9:3801-3812. [PMID: 31540973 PMCID: PMC6829142 DOI: 10.1534/g3.119.400579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo.
Collapse
|
26
|
The Role of Insulation in Patterning Gene Expression. Genes (Basel) 2019; 10:genes10100767. [PMID: 31569427 PMCID: PMC6827083 DOI: 10.3390/genes10100767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Development is orchestrated by regulatory elements that turn genes ON or OFF in precise spatial and temporal patterns. Many safety mechanisms prevent inappropriate action of a regulatory element on the wrong gene promoter. In flies and mammals, dedicated DNA elements (insulators) recruit protein factors (insulator binding proteins, or IBPs) to shield promoters from regulatory elements. In mammals, a single IBP called CCCTC-binding factor (CTCF) is known, whereas genetic and biochemical analyses in Drosophila have identified a larger repertoire of IBPs. How insulators function at the molecular level is not fully understood, but it is currently thought that they fold chromosomes into conformations that affect regulatory element-promoter communication. Here, we review the discovery of insulators and describe their properties. We discuss recent genetic studies in flies and mice to address the question: Is gene insulation important for animal development? Comparing and contrasting observations in these two species reveal that they have different requirements for insulation, but that insulation is a conserved and critical gene regulation strategy.
Collapse
|
27
|
The same domain of Su(Hw) is required for enhancer blocking and direct promoter repression. Sci Rep 2019; 9:5314. [PMID: 30926937 PMCID: PMC6441048 DOI: 10.1038/s41598-019-41761-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding architectural protein that participates in the organization of insulators and repression of promoters in Drosophila. This protein contains acidic regions at both ends and a central cluster of 12 zinc finger domains, some of which are involved in the specific recognition of the binding site. One of the well-described in vivo function of Su(Hw) is the repression of transcription of neuronal genes in oocytes. Here, we have found that the same Su(Hw) C-terminal region (aa 720–892) is required for insulation as well as for promoter repression. The best characterized partners of Su(Hw), CP190 and Mod(mdg4)-67.2, are not involved in the repression of neuronal genes. Taken together, these results suggest that an unknown protein or protein complex binds to the C-terminal region of Su(Hw) and is responsible for the direct repression activity of Su(Hw).
Collapse
|
28
|
Dorafshan E, Kahn TG, Glotov A, Savitsky M, Walther M, Reuter G, Schwartz YB. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep 2019; 20:embr.201846762. [PMID: 30833342 DOI: 10.15252/embr.201846762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.
Collapse
Affiliation(s)
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Matthias Walther
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gunter Reuter
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Gambetta MC, Furlong EEM. The Insulator Protein CTCF Is Required for Correct Hox Gene Expression, but Not for Embryonic Development in Drosophila. Genetics 2018; 210:129-136. [PMID: 30021792 PMCID: PMC6116963 DOI: 10.1534/genetics.118.301350] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Insulator binding proteins (IBPs) play an important role in regulating gene expression by binding to specific DNA sites to facilitate appropriate gene regulation. There are several IBPs in Drosophila, each defined by their ability to insulate target gene promoters in transgenic assays from the activating or silencing effects of neighboring regulatory elements. Of these, only CCCTC-binding factor (CTCF) has an obvious ortholog in mammals. CTCF is essential for mammalian cell viability and is an important regulator of genome architecture. In flies, CTCF is both maternally deposited and zygotically expressed. Flies lacking zygotic CTCF die as young adults with homeotic defects, suggesting that specific Hox genes are misexpressed in inappropriate body segments. The lack of any major embryonic defects was assumed to be due to the maternal supply of CTCF protein, as maternally contributed factors are often sufficient to progress through much of embryogenesis. Here, we definitively determined the requirement of CTCF for developmental progression in Drosophila We generated animals that completely lack both maternal and zygotic CTCF and found that, contrary to expectation, these mutants progress through embryogenesis and larval life. They develop to pharate adults, which fail to eclose from their pupal case. These mutants show exacerbated homeotic defects compared to zygotic mutants, misexpressing the Hox gene Abdominal-B outside of its normal expression domain early in development. Our results indicate that loss of Drosophila CTCF is not accompanied by widespread effects on gene expression, which may be due to redundant functions with other IBPs. Rather, CTCF is required for correct Hox gene expression patterns and for the viability of adult Drosophila.
Collapse
Affiliation(s)
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| |
Collapse
|
30
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
31
|
Monribot-Villanueva J, Zurita M, Vázquez M. Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis 2017; 55. [PMID: 27935206 DOI: 10.1002/dvg.23009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023]
Abstract
SUMOylation is a reversible post-translational protein modification that affects the intracellular localization, stability, activity, and interactions of its protein targets. The SUMOylation pathway influences several nuclear and cytoplasmic processes. The expression of many genes, in particular those involved in development is finely tuned in space and time by several groups of proteins. There is growing evidence that transcriptional regulation mechanisms involve direct SUMOylation of transcriptional-related proteins such as initiation and elongation factors, and subunits of chromatin modifier and remodeling complexes originally described as members of the trithorax and Polycomb groups in Drosophila. Therefore, it is being unveiled that SUMOylation has a role in both, gene silencing and gene activation mechanisms. The goal of this review is to discuss the information on how SUMO modification in components of these multi-subunit complexes may have an effect in genome architecture and function and, therefore, in the regulation of gene expression in time and space.
Collapse
Affiliation(s)
- Juan Monribot-Villanueva
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
32
|
Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex. Genetics 2016; 205:589-603. [PMID: 28007886 PMCID: PMC5289839 DOI: 10.1534/genetics.116.195586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
Chromatin boundary elements subdivide chromosomes in multicellular organisms into physically independent domains. In addition to this architectural function, these elements also play a critical role in gene regulation. Here we investigated the evolution of a Drosophila Bithorax complex boundary element called Fab-7, which is required for the proper parasegment specific expression of the homeotic Abd-B gene. Using a “gene” replacement strategy, we show that Fab-7 boundaries from two closely related species, D. erecta and D. yakuba, and a more distant species, D. pseudoobscura, are able to substitute for the melanogaster boundary. Consistent with this functional conservation, the two known Fab-7 boundary factors, Elba and LBC, have recognition sequences in the boundaries from all species. However, the strategies used for maintaining binding and function in the face of sequence divergence is different. The first is conventional, and depends upon conservation of the 8 bp Elba recognition sequence. The second is unconventional, and takes advantage of the unusually large and flexible sequence recognition properties of the LBC boundary factor, and the deployment of multiple LBC recognition elements in each boundary. In the former case, binding is lost when the recognition sequence is altered. In the latter case, sequence divergence is accompanied by changes in the number, relative affinity, and location of the LBC recognition elements.
Collapse
|