1
|
Mantel SJ, Sweigart AL. Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species. Mol Ecol 2024; 33:e17261. [PMID: 38174628 PMCID: PMC10922885 DOI: 10.1111/mec.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers, Mimulus guttatus and Mimulus nasutus, from the sympatric Catherine Creek population. We discover that the three M. guttatus founders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed from M. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among the M. guttatus founders, two due to admixture. We find strong, genome-wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of three M. guttatus lines, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Collapse
Affiliation(s)
- Samuel J. Mantel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
2
|
Sotola VA, Berg CS, Samuli M, Chen H, Mantel SJ, Beardsley PA, Yuan YW, Sweigart AL, Fishman L. Genomic mechanisms and consequences of diverse postzygotic barriers between monkeyflower species. Genetics 2023; 225:iyad156. [PMID: 37603838 DOI: 10.1093/genetics/iyad156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
The evolution of genomic incompatibilities causing postzygotic barriers to hybridization is a key step in species divergence. Incompatibilities take 2 general forms-structural divergence between chromosomes leading to severe hybrid sterility in F1 hybrids and epistatic interactions between genes causing reduced fitness of hybrid gametes or zygotes (Dobzhansky-Muller incompatibilities). Despite substantial recent progress in understanding the molecular mechanisms and evolutionary origins of both types of incompatibility, how each behaves across multiple generations of hybridization remains relatively unexplored. Here, we use genetic mapping in F2 and recombinant inbred line (RIL) hybrid populations between the phenotypically divergent but naturally hybridizing monkeyflowers Mimulus cardinalis and M. parishii to characterize the genetic basis of hybrid incompatibility and examine its changing effects over multiple generations of experimental hybridization. In F2s, we found severe hybrid pollen inviability (<50% reduction vs parental genotypes) and pseudolinkage caused by a reciprocal translocation between Chromosomes 6 and 7 in the parental species. RILs retained excess heterozygosity around the translocation breakpoints, which caused substantial pollen inviability when interstitial crossovers had not created compatible heterokaryotypic configurations. Strong transmission ratio distortion and interchromosomal linkage disequilibrium in both F2s and RILs identified a novel 2-locus genic incompatibility causing sex-independent gametophytic (haploid) lethality. The latter interaction eliminated 3 of the expected 9 F2 genotypic classes via F1 gamete loss without detectable effects on the pollen number or viability of F2 double heterozygotes. Along with the mapping of numerous milder incompatibilities, these key findings illuminate the complex genetics of plant hybrid breakdown and are an important step toward understanding the genomic consequences of natural hybridization in this model system.
Collapse
Affiliation(s)
- V Alex Sotola
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Matthew Samuli
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Samuel J Mantel
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul A Beardsley
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Mantel SJ, Sweigart AL. Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.05.552095. [PMID: 37577468 PMCID: PMC10418264 DOI: 10.1101/2023.08.05.552095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in sympatric species are not well understood.Here, we explore these issues using genetic mapping in three populations of recombinant inbred lines between naturally hybridizing monkeyflowers Mimulus guttatus and M. nasutus from the sympatric Catherine Creek population.The three M. guttatus founders differ dramatically in admixture history. Comparative genetic mapping also reveals three putative inversions segregating among the M. guttatus founders, two due to admixture. We observe strong, genome-wide transmission ratio distortion, but patterns are highly variable among populations. Some distortion is explained by epistatic selection favoring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid fertility, including two interacting pairs coinciding with peaks of distortion.Remarkably, in this limited sample of M. guttatus, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbors diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Collapse
Affiliation(s)
- Samuel J. Mantel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
4
|
Shahryary Y, Symeonidi A, Hazarika RR, Denkena J, Mubeen T, Hofmeister B, van Gurp T, Colomé-Tatché M, Verhoeven KJ, Tuskan G, Schmitz RJ, Johannes F. AlphaBeta: computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants. Genome Biol 2020; 21:260. [PMID: 33023650 PMCID: PMC7539454 DOI: 10.1186/s13059-020-02161-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/02/2020] [Indexed: 01/28/2023] Open
Abstract
Stochastic changes in DNA methylation (i.e., spontaneous epimutations) contribute to methylome diversity in plants. Here, we describe AlphaBeta, a computational method for estimating the precise rate of such stochastic events using pedigree-based DNA methylation data as input. We demonstrate how AlphaBeta can be employed to study transgenerationally heritable epimutations in clonal or sexually derived mutation accumulation lines, as well as somatic epimutations in long-lived perennials. Application of our method to published and new data reveals that spontaneous epimutations accumulate neutrally at the genome-wide scale, originate mainly during somatic development and that they can be used as a molecular clock for age-dating trees.
Collapse
Affiliation(s)
- Yadollah Shahryary
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| | - Aikaterini Symeonidi
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
| | - Rashmi R. Hazarika
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| | - Johanna Denkena
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
| | - Talha Mubeen
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| | | | - Thomas van Gurp
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, Wageningen, The Netherlands
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, Groningen, 9713 AV Netherlands
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Erlenmeyer-Forum 2, Freising, 85354 Germany
| | - Koen J.F. Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, Wageningen, The Netherlands
| | - Gerald Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Robert J. Schmitz
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
- Department of Genetics, The University of Georgia, 120 East Green Street, Athens, 30602 USA
| | - Frank Johannes
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| |
Collapse
|
5
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
6
|
X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression. Heredity (Edinb) 2018; 122:906-915. [PMID: 30518968 DOI: 10.1038/s41437-018-0163-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 11/08/2022] Open
Abstract
Meiotic drivers are selfish genetic elements that promote their own transmission into the gametes, which results in intragenomic conflicts. In the Paris sex-ratio system of Drosophila simulans, drivers located on the X chromosome prevent the segregation of the heterochromatic Y chromosome during meiosis II, and hence the production of Y-bearing sperm. The resulting sex-ratio bias strongly impacts population dynamics and evolution. Natural selection, which tends to restore an equal sex ratio, favors the emergence of resistant Y chromosomes and autosomal suppressors. This is the case in the Paris sex-ratio system where the drivers became cryptic in most of the natural populations of D. simulans. Here, we used a quantitative trait locus (QTL) mapping approach based on the analysis of 152 highly recombinant inbred lines (RILs) to investigate the genetic determinism of autosomal suppression. The RILs were derived from an advanced intercross between two parental lines, one showing complete autosomal suppression while the other one was sensitive to drive. The confrontation of RIL autosomes with a reference XSR chromosome allowed us to identify two QTLs on chromosome 2 and three on chromosome 3, with strong epistatic interactions. Our findings highlight the multiplicity of actors involved in this intragenomic battle over the sex ratio.
Collapse
|
7
|
Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis. Front Genet 2018; 9:481. [PMID: 30505316 PMCID: PMC6250786 DOI: 10.3389/fgene.2018.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic variants that are neutral within, but deleterious between, populations (Dobzhansky-Muller Incompatibilities) are thought to initiate hybrid dysfunction and then to accumulate and complete the speciation process. To identify the types of genetic differences that might initiate speciation, it is useful to study inter-population (intra-species) hybrids that exhibit reduced fitness. In Caenorhabditis briggsae, a close relative of the nematode C. elegans, such minor genetic incompatibilities have been identified. One incompatibility between the mitochondrial and nuclear genomes reduces the fitness of some hybrids. To understand the nuclear genetic architecture of this epistatic interaction, we constructed two sets of recombinant inbred lines by hybridizing two genetically diverse wild populations. In such lines, selection is able to eliminate deleterious combinations of alleles derived from the two parental populations. The genotypes of surviving hybrid lines thus reveal favorable allele combinations at loci experiencing selection. Our genotype data from the resulting lines are consistent with the interpretation that the X alleles participate in epistatic interactions with autosomes and the mitochondrial genome. We evaluate this possibility given predictions that mitochondria-X epistasis should be more prevalent than between mitochondria and autosomes. Our empirical identification of inter-genomic linkage disequilibrium supports the body of literature indicating that the accumulation of mito-nuclear genetic incompatibilities might initiate the speciation process through the generation of less-fit inter-population hybrids.
Collapse
Affiliation(s)
- Rania Haddad
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Brandon Meter
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Joseph A Ross
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| |
Collapse
|
8
|
In search of the Goldilocks zone for hybrid speciation. PLoS Genet 2018; 14:e1007613. [PMID: 30192761 PMCID: PMC6145587 DOI: 10.1371/journal.pgen.1007613] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/19/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hybridization has recently gained considerable interest both as a unique opportunity for observing speciation mechanisms and as a potential engine for speciation. The latter remains a controversial topic. It was recently hypothesized that the reciprocal sorting of genetic incompatibilities from parental species could result in hybrid speciation, when the hybrid population maintains a mixed combination of the parental incompatibilities that prevents further gene exchange with both parental populations. However, the specifics of the purging/sorting process of multiple incompatibilities have not been examined theoretically. We here investigate the allele-frequency dynamics of an isolated hybrid population that results from a single hybridization event. Using models of two or four loci, we investigate the fate of one or two genetic incompatibilities of the Dobzhansky-Muller type (DMIs). We study how various parameters affect both the sorting/purging of the DMIs and the probability of observing hybrid speciation by reciprocal sorting. We find that the probability of hybrid speciation is strongly dependent on the linkage architecture (i.e. the order and recombination rate between loci along chromosomes), the population size of the hybrid population, and the initial relative contributions of the parental populations to the hybrid population. We identify a Goldilocks zone for specific linkage architectures and intermediate recombination rates, in which hybrid speciation becomes highly probable. Whereas an equal contribution of parental populations to the hybrid population maximizes the hybrid speciation probability in the Goldilocks zone, other linkage architectures yield unintuitive asymmetric maxima. We provide an explanation for this pattern, and discuss our results both with respect to the best conditions for observing hybrid speciation in nature and their implications regarding patterns of introgression in hybrid zones. Hybridization is observed ubiquitously in nature. Its outcome can range from extinction to the creation of new species. With respect to the latter, the probability of homoploid hybrid speciation, i.e. the formation of a new species as a result of a hybridization event without changes in the ploidy of the organism, is a hotly debated topic. Here, we analyze a minimal model for homoploid hybrid speciation, in which reproductive isolation is achieved by means of (postzygotic) Dobzhansky-Muller incompatibilities. When these postzygotic genetic incompatibilities are resolved in the hybrid population, their reciprocal sorting can result in reproductive isolation from both parental populations, thus creating a hybrid species. We show that, in accordance with the current literature, hybrid speciation tends to be rare. However, specific arrangements of the genes responsible for reproductive isolation can make reciprocal sorting almost unavoidable and thus create barriers to the parental population in an almost deterministic matter. We discuss the implications of these results for hybrid speciation and patterns of introgression in nature.
Collapse
|
9
|
Behrouzi P, Wit EC. Detecting epistatic selection with partially observed genotype data by using copula graphical models. J R Stat Soc Ser C Appl Stat 2018. [DOI: 10.1111/rssc.12287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|