1
|
Transfection of Sponge Cells and Intracellular Localization of Cancer-Related MYC, RRAS2, and DRG1 Proteins. Mar Drugs 2023; 21:md21020119. [PMID: 36827160 PMCID: PMC9964533 DOI: 10.3390/md21020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The determination of the protein's intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the interest in studying human diseases from an evolutionary perspective has significantly increased. Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs but with a complex genome containing many genes whose human homologs have been implicated in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating the fundamental role of the proteins involved in cancer. In this study, we overexpressed human cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the cell's cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical localization of human proteins and their sponge homologs, indicating their similar cellular functions.
Collapse
|
2
|
Bai Y, Caussinus E, Leo S, Bosshardt F, Myachina F, Rot G, Robinson MD, Lehner CF. A cis-regulatory element promoting increased transcription at low temperature in cultured ectothermic Drosophila cells. BMC Genomics 2021; 22:771. [PMID: 34711176 PMCID: PMC8555087 DOI: 10.1186/s12864-021-08057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08057-4.
Collapse
Affiliation(s)
- Yu Bai
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stefano Leo
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fritz Bosshardt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Faina Myachina
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gregor Rot
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Mariyappa D, Luhur A, Overton D, Zelhof AC. Generation of Drosophila attP containing cell lines using CRISPR-Cas9. G3-GENES GENOMES GENETICS 2021; 11:6272517. [PMID: 33963853 PMCID: PMC8496291 DOI: 10.1093/g3journal/jkab161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 11/14/2022]
Abstract
The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.
Collapse
Affiliation(s)
- Daniel Mariyappa
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Arthur Luhur
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Danielle Overton
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Andrew C Zelhof
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
4
|
Luhur A, Klueg KM, Zelhof AC. Generating and working with Drosophila cell cultures: Current challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e339. [PMID: 30561900 DOI: 10.1002/wdev.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Kristin M Klueg
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Andrew C Zelhof
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
5
|
Nagarkar-Jaiswal S, Manivannan SN, Zuo Z, Bellen HJ. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. eLife 2017; 6. [PMID: 28561736 PMCID: PMC5493436 DOI: 10.7554/elife.26420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila. Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase-dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ, encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail. DOI:http://dx.doi.org/10.7554/eLife.26420.001 The instructions needed to build and maintain cells in an organism are encoded in their DNA. There are many different cell types, and each type only needs a small portion of the information found in the DNA to do its job. Hence, only some of the instructions, in the form of genes, need to be active or ‘expressed’ in any given cell type. To understand how a gene works, it is necessary to know in which cell the gene is expressed and where in the cell the gene product – normally a protein – is located. Researchers may study a gene by deleting it, which prevents the protein from being made, or by attaching a new instruction into the gene, which generates a fluorescent tag on the protein to determine where and when it is expressed. Until now, it was not possible to selectively inactivate a gene and simultaneously mark both normal cells containing the protein and mutant cells lacking the protein. Based on an existing tagging approach, Nagarkar-Jaiswal et al. have now developed a method in which normal and mutant cells of fruit flies are marked differently. A gene of interest is tagged with a fluorescent marker called green fluorescent protein (or GFP). The same gene is then inactivated in some of the cells, which are tagged with a red marker called mCherry. Nagarkar-Jaiswal et al. compared normal and mutant cells, and were able to determine how long it takes before the mutant cells become abnormal. With this new method, the role of numerous genes in any tissue of adult flies can be reassessed. This will allow to investigate what happens when a protein is removed in specific cells in adult flies. A future goal will be to apply this method to other animals that are more closely related to humans, such as mice, to gain a clearer picture of the role of genes in different cell types and how faulty genes may cause disease. DOI:http://dx.doi.org/10.7554/eLife.26420.002
Collapse
Affiliation(s)
| | - Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| |
Collapse
|
6
|
Manivannan SN, Simcox A. Targeted genetics in Drosophila cell lines: Inserting single transgenes in vitro. Fly (Austin) 2016; 10:134-41. [PMID: 27261098 PMCID: PMC4970541 DOI: 10.1080/19336934.2016.1191716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
A long-standing problem with analyzing transgene expression in tissue-culture cells is the variation caused by random integration of different copy numbers of transfected transgenes. In mammalian cells, single transgenes can be inserted by homologous recombination but this process is inefficient in Drosophila cells. To tackle this problem, our group, and the Cherbas group, used recombination-mediated cassette exchange (RMCE) to introduce single-copy transgenes into specific locations in the Drosophila genome. In both cases, ϕC31 was used to catalyze recombination between its target sequences attP in the genome, and attB flanking the donor sequence. We generated cell lines de novo with a single attP-flanked cassette for recombination, whereas, Cherbas et al. introduced a single attP-flanked cassette into existing cell lines. In both approaches, a 2-drug selection scheme was used to select for cells with a single copy of the donor sequence inserted by RMCE and against cells with random integration of multiple copies. Here we describe the general advantages of using RMCE to introduce genes into fly cells, the different attributes of the 2 methods, and how future work could make use of other recombinases and CRISPR/Cas9 genome editing to further enable genetic manipulation of Drosophila cells in vitro.
Collapse
Affiliation(s)
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| |
Collapse
|
7
|
Tools for Targeted Genome Engineering of Established Drosophila Cell Lines. Genetics 2015; 201:1307-18. [PMID: 26450921 PMCID: PMC4676523 DOI: 10.1534/genetics.115.181610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/04/2015] [Indexed: 11/18/2022] Open
Abstract
We describe an adaptation of φC31 integrase-mediated targeted cassette exchange for use in Drosophila cell lines. Single copies of an attP-bounded docking platform carrying a GFP-expression marker, with or without insulator elements flanking the attP sites, were inserted by P-element transformation into the Kc167 and Sg4 cell lines; each of the resulting docking-site lines carries a single mapped copy of one of the docking platforms. Vectors for targeted substitution contain a cloning cassette flanked by attB sites. Targeted substitution occurs by integrase-mediated substitution between the attP sites (integrated) and the attB sites (vector). We describe procedures for isolating cells carrying the substitutions and for eliminating the products of secondary off-target events. We demonstrate the technology by integrating a cassette containing a Cu(2+)-inducible mCherry marker, and we report the expression properties of those lines. When compared with clonal lines made by traditional transformation methods, which lead to the illegitimate insertion of tandem arrays, targeted insertion lines give more uniform expression, lower basal expression, and higher induction ratios. Targeted substitution, though intricate, affords results that should greatly improve comparative expression assays-a major emphasis of cell-based studies.
Collapse
|