1
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J Fungi (Basel) 2024; 10:132. [PMID: 38392804 PMCID: PMC10890087 DOI: 10.3390/jof10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.
Collapse
Affiliation(s)
| | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; (M.D.); (X.M.)
| |
Collapse
|
3
|
Seitz BC, Mucelli X, Majano M, Wallis Z, Dodge AC, Carmona C, Durant M, Maynard S, Huang LS. Meiosis II spindle disassembly requires two distinct pathways. Mol Biol Cell 2023; 34:ar98. [PMID: 37436806 PMCID: PMC10551701 DOI: 10.1091/mbc.e23-03-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
During exit from meiosis II, cells undergo several structural rearrangements, including disassembly of the meiosis II spindles and cytokinesis. Each of these changes is regulated to ensure that they occur at the proper time. Previous studies have demonstrated that both SPS1, which encodes a STE20-family GCKIII kinase, and AMA1, which encodes a meiosis-specific activator of the Anaphase Promoting Complex, are required for both meiosis II spindle disassembly and cytokinesis in the budding yeast Saccharomyces cerevisiae. We examine the relationship between meiosis II spindle disassembly and cytokinesis and find that the meiosis II spindle disassembly failure in sps1Δ and ama1∆ cells is not the cause of the cytokinesis defect. We also see that the spindle disassembly defects in sps1Δ and ama1∆ cells are phenotypically distinct. We examined known microtubule-associated proteins Ase1, Cin8, and Bim1, and found that AMA1 is required for the proper loss of Ase1 and Cin8 on meiosis II spindles while SPS1 is required for Bim1 loss in meiosis II. Taken together, these data indicate that SPS1 and AMA1 promote distinct aspects of meiosis II spindle disassembly, and that both pathways are required for the successful completion of meiosis.
Collapse
Affiliation(s)
- Brian C. Seitz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Xheni Mucelli
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Maira Majano
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Zoey Wallis
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Ashley C. Dodge
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Catherine Carmona
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Matthew Durant
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Sharra Maynard
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
4
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
5
|
Durant M, Roesner JM, Mucelli X, Slubowski CJ, Klee E, Seitz BC, Wallis Z, Huang LS. The Smk1 MAPK and Its Activator, Ssp2, Are Required for Late Prospore Membrane Development in Sporulating Saccharomyces cerevisiae. J Fungi (Basel) 2021; 7:53. [PMID: 33466572 PMCID: PMC7828665 DOI: 10.3390/jof7010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
During sporulation in the budding yeast Saccharomyces cerevisiae, proper development of the prospore membrane is necessary for the formation of viable spores. The prospore membrane will eventually become the plasma membrane of the newly formed haploid spore and also serves as the template for the deposition of the spore wall. The prospore membrane is generated de novo during meiosis II and the growing edge of the prospore membrane is associated with the Leading Edge Protein (LEP) complex. We find that the Smk1 MAP kinase, along with its activator Ssp2, transiently localizes with the LEP during late meiosis II. SSP2 is required for the leading edge localization of Smk1; this localization is independent of the activation state of Smk1. Like other LEP components, the localization of Smk1 at the leading edge also depends on Ady3. Although prospore membrane development begins normally in smk1 and ssp2 mutants, late prospore membrane formation is disrupted, with the formation of ectopic membrane compartments. Thus, MAP kinase signaling plays an important role in the formation of the prospore membrane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, 100 Morrisey Boulevard, Boston, MA 02125, USA; (M.D.); (J.M.R.); (X.M.); (C.J.S.); (E.K.); (B.C.S.); (Z.W.)
| |
Collapse
|
6
|
Paulissen SM, Hunt CA, Seitz BC, Slubowski CJ, Yu Y, Mucelli X, Truong D, Wallis Z, Nguyen HT, Newman-Toledo S, Neiman AM, Huang LS. A Noncanonical Hippo Pathway Regulates Spindle Disassembly and Cytokinesis During Meiosis in Saccharomyces cerevisiae. Genetics 2020; 216:447-462. [PMID: 32788308 PMCID: PMC7536847 DOI: 10.1534/genetics.120.303584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 11/18/2022] Open
Abstract
Meiosis in the budding yeast Saccharomyces cerevisiae is used to create haploid yeast spores from a diploid mother cell. During meiosis II, cytokinesis occurs by closure of the prospore membrane, a membrane that initiates at the spindle pole body and grows to surround each of the haploid meiotic products. Timely prospore membrane closure requires SPS1, which encodes an STE20 family GCKIII kinase. To identify genes that may activate SPS1, we utilized a histone phosphorylation defect of sps1 mutants to screen for genes with a similar phenotype and found that cdc15 shared this phenotype. CDC15 encodes a Hippo-like kinase that is part of the mitotic exit network. We find that Sps1 complexes with Cdc15, that Sps1 phosphorylation requires Cdc15, and that CDC15 is also required for timely prospore membrane closure. We also find that SPS1, like CDC15, is required for meiosis II spindle disassembly and sustained anaphase II release of Cdc14 in meiosis. However, the NDR-kinase complex encoded by DBF2/DBF20MOB1 which functions downstream of CDC15 in mitotic cells, does not appear to play a role in spindle disassembly, timely prospore membrane closure, or sustained anaphase II Cdc14 release. Taken together, our results suggest that the mitotic exit network is rewired for exit from meiosis II, such that SPS1 replaces the NDR-kinase complex downstream of CDC15.
Collapse
Affiliation(s)
- Scott M Paulissen
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Cindy A Hunt
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Brian C Seitz
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | | | - Yao Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794
| | - Xheni Mucelli
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Dang Truong
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Zoey Wallis
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Hung T Nguyen
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | | | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794
| | - Linda S Huang
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| |
Collapse
|
7
|
Hao C, Yin J, Sun M, Wang Q, Liang J, Bian Z, Liu H, Xu J. The meiosis‐specific APC activator
FgAMA1
is dispensable for meiosis but important for ascosporogenesis in
Fusarium graminearum. Mol Microbiol 2019; 111:1245-1262. [DOI: 10.1111/mmi.14219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| |
Collapse
|
8
|
Omerza G, Tio CW, Philips T, Diamond A, Neiman AM, Winter E. The meiosis-specific Cdc20 family-member Ama1 promotes binding of the Ssp2 activator to the Smk1 MAP kinase. Mol Biol Cell 2017; 29:66-74. [PMID: 29118076 PMCID: PMC5746067 DOI: 10.1091/mbc.e17-07-0473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 02/02/2023] Open
Abstract
Smk1 is a meiosis-specific MAP kinase that is activated by a binding partner, Ssp2. This study shows that the meiosis-specific Cdc20 homologue, Ama1, triggers Ssp2/Smk1 complex formation at specialized meiotic membranes as nuclear segregation is being completed, thus triggering kinase activity at a specific place and time during this developmental program. Smk1 is a meiosis-specific MAP kinase (MAPK) in budding yeast that is required for spore formation. It is localized to prospore membranes (PSMs), the structures that engulf haploid cells during meiosis II (MII). Similar to canonically activated MAPKs, Smk1 is controlled by phosphorylation of its activation-loop threonine (T) and tyrosine (Y). However, activation loop phosphorylation occurs via a noncanonical two-step mechanism in which 1) the cyclin-dependent kinase activating kinase Cak1 phosphorylaytes T207 during MI, and 2) Smk1 autophosphorylates Y209 as MII draws to a close. Autophosphorylation of Y209 and catalytic activity for substrates require Ssp2, a meiosis-specific protein that is translationally repressed until anaphase of MII. Ama1 is a meiosis-specific targeting subunit of the anaphase-promoting complex/cyclosome that regulates multiple steps in meiotic development, including exit from MII. Here, we show that Ama1 activates autophosphorylation of Smk1 on Y209 by promoting formation of the Ssp2/Smk1 complex at PSMs. These findings link meiotic exit to Smk1 activation and spore wall assembly.
Collapse
Affiliation(s)
- Gregory Omerza
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Chong Wai Tio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Timothy Philips
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Aviva Diamond
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
9
|
The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of Saccharomyces cerevisiae. Genetics 2017; 206:919-937. [PMID: 28450458 DOI: 10.1534/genetics.116.194522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Age-based inheritance of centrosomes in eukaryotic cells is associated with faithful chromosome distribution in asymmetric cell divisions. During Saccharomyces cerevisiae ascospore formation, such an inheritance mechanism targets the yeast centrosome equivalents, the spindle pole bodies (SPBs) at meiosis II onset. Decreased nutrient availability causes initiation of spore formation at only the younger SPBs and their associated genomes. This mechanism ensures encapsulation of nonsister genomes, which preserves genetic diversity and provides a fitness advantage at the population level. Here, by usage of an enhanced system for sporulation-induced protein depletion, we demonstrate that the core mitotic exit network (MEN) is involved in age-based SPB selection. Moreover, efficient genome inheritance requires Dbf2/20-Mob1 during a late step in spore maturation. We provide evidence that the meiotic functions of the MEN are more complex than previously thought. In contrast to mitosis, completion of the meiotic divisions does not strictly rely on the MEN whereas its activity is required at different time points during spore development. This is reminiscent of vegetative MEN functions in spindle polarity establishment, mitotic exit, and cytokinesis. In summary, our investigation contributes to the understanding of age-based SPB inheritance during sporulation of S. cerevisiae and provides general insights on network plasticity in the context of a specialized developmental program. Moreover, the improved system for a developmental-specific tool to induce protein depletion will be useful in other biological contexts.
Collapse
|
10
|
Paulissen SM, Huang LS. Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format. J Vis Exp 2016. [PMID: 27684273 DOI: 10.3791/54584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During times of nutritional stress, Saccharomyces cerevisiae undergoes gametogenesis, known as sporulation. Diploid yeast cells that are starved for nitrogen and carbon will initiate the sporulation process. The process of sporulation includes meiosis followed by spore formation, where the haploid nuclei are packaged into environmentally resistant spores. We have developed methods for the efficient sporulation of budding yeast in 96 multiwell plates, to increase the throughput of screening yeast cells for sporulation phenotypes. These methods are compatible with screening with yeast containing plasmids requiring nutritional selection, when appropriate minimal media is used, or with screening yeast with genomic alterations, when a rich presporulation regimen is used. We find that for this method, aeration during sporulation is critical for spore formation, and have devised techniques to ensure sufficient aeration that are compatible with the 96 multiwell plate format. Although these methods do not achieve the typical ~80% level of sporulation that can be achieved in large-volume flask based experiments, these methods will reliably achieve about 50-60% level of sporulation in small-volume multiwell plates.
Collapse
Affiliation(s)
| | - Linda S Huang
- Department of Biology, University of Massachusetts Boston;
| |
Collapse
|