1
|
Li S, Chen LL, Wang XH, Zhu HJ, Li XL, Feng X, Guo L, Ou XH, Ma JY. Chromosomal variants accumulate in genomes of the spontaneous aborted fetuses revealed by chromosomal microarray analysis. PLoS One 2021; 16:e0259518. [PMID: 34727132 PMCID: PMC8562782 DOI: 10.1371/journal.pone.0259518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Spontaneous abortion is an impeding factor for the success rates of human assistant reproductive technology (ART). Causes of spontaneous abortion include not only the pregnant mothers’ health conditions and lifestyle habits, but also the fetal development potential. Evidences had shown that fetal chromosome aneuploidy is associated with fetal spontaneous abortion, however, it is still not definite that whether other genome variants, like copy number variations (CNVs) or loss of heterozygosity (LOHs) is associated with the spontaneous abortion. To assess the relationship between the fetal genome variants and abortion during ART, a chromosomal microarray data including chromosomal information of 184 spontaneous aborted fetuses, 147 adult female patients and 78 adult male patients during ART were collected. We firstly analyzed the relationship of fetal aneuploidy with maternal ages and then compared the numbers and lengths of CNVs (< 4Mbp) and LOHs among adults and aborted fetuses. In addition to the already known association between chromosomal aneuploidy and maternal ages, from the chromosomal microarray data we found that the numbers and the accumulated lengths of short CNVs and LOHs in the aborted fetuses were significantly larger or longer than those in adults. Our findings indicated that the increased numbers and accumulated lengths of CNVs or LOHs might be associated with the spontaneous abortion during ART.
Collapse
Affiliation(s)
- Sen Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei-Ling Chen
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xing-Hua Wang
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Jing Zhu
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-Long Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Guo
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jun-Yu Ma
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- * E-mail:
| |
Collapse
|
2
|
Stewart JA, Hillegass MB, Oberlitner JH, Younkin EM, Wasserman BF, Casper AM. Noncanonical outcomes of break-induced replication produce complex, extremely long-tract gene conversion events in yeast. G3 (BETHESDA, MD.) 2021; 11:jkab245. [PMID: 34568913 PMCID: PMC8473981 DOI: 10.1093/g3journal/jkab245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Long-tract gene conversions (LTGC) can result from the repair of collapsed replication forks, and several mechanisms have been proposed to explain how the repair process produces this outcome. We studied LTGC events produced from repair collapsed forks at yeast fragile site FS2. Our analysis included chromosome sizing by contour-clamped homogeneous electric field electrophoresis, next-generation whole-genome sequencing, and Sanger sequencing across repair event junctions. We compared the sequence and structure of LTGC events in our cells to the expected qualities of LTGC events generated by proposed mechanisms. Our evidence indicates that some LTGC events arise from half-crossover during BIR, some LTGC events arise from gap repair, and some LTGC events can be explained by either gap repair or "late" template switch during BIR. Also based on our data, we propose that models of collapsed replication forks be revised to show not a one-end double-strand break (DSB), but rather a two-end DSB in which the ends are separated in time and subject to gap repair.
Collapse
Affiliation(s)
- Joseph A Stewart
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Joseph H Oberlitner
- Department of Biology, Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Ellen M Younkin
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Beth F Wasserman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Anne M Casper
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
3
|
Marsit S, Hénault M, Charron G, Fijarczyk A, Landry CR. The neutral rate of whole-genome duplication varies among yeast species and their hybrids. Nat Commun 2021; 12:3126. [PMID: 34035259 PMCID: PMC8149824 DOI: 10.1038/s41467-021-23231-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Hybridization and polyploidization are powerful mechanisms of speciation. Hybrid speciation often coincides with whole-genome duplication (WGD) in eukaryotes. This suggests that WGD may allow hybrids to thrive by increasing fitness, restoring fertility and/or increasing access to adaptive mutations. Alternatively, it has been suggested that hybridization itself may trigger WGD. Testing these models requires quantifying the rate of WGD in hybrids without the confounding effect of natural selection. Here we show, by measuring the spontaneous rate of WGD of more than 1300 yeast crosses evolved under relaxed selection, that some genotypes or combinations of genotypes are more prone to WGD, including some hybrids between closely related species. We also find that higher WGD rate correlates with higher genomic instability and that WGD increases fertility and genetic variability. These results provide evidence that hybridization itself can promote WGD, which in turn facilitates the evolution of hybrids.
Collapse
Affiliation(s)
- S Marsit
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada.
| | - M Hénault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| | - G Charron
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - A Fijarczyk
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| | - C R Landry
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Jia X, Zhang Q, Jiang M, Huang J, Yu L, Traw MB, Tian D, Hurst LD, Yang S. Mitotic gene conversion can be as important as meiotic conversion in driving genetic variability in plants and other species without early germline segregation. PLoS Biol 2021; 19:e3001164. [PMID: 33750968 PMCID: PMC8016264 DOI: 10.1371/journal.pbio.3001164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
In contrast to common meiotic gene conversion, mitotic gene conversion, because it is so rare, is often ignored as a process influencing allelic diversity. We show that if there is a large enough number of premeiotic cell divisions, as seen in many organisms without early germline sequestration, such as plants, this is an unsafe position. From examination of 1.1 million rice plants, we determined that the rate of mitotic gene conversion events, per mitosis, is 2 orders of magnitude lower than the meiotic rate. However, owing to the large number of mitoses between zygote and gamete and because of long mitotic tract lengths, meiotic and mitotic gene conversion can be of approximately equivalent importance in terms of numbers of markers converted from zygote to gamete. This holds even if we assume a low number of premeiotic cell divisions (approximately 40) as witnessed in Arabidopsis. A low mitotic rate associated with long tracts is also seen in yeast, suggesting generality of results. For species with many mitoses between each meiotic event, mitotic gene conversion should not be overlooked. Gene conversion associated with meiosis has long been a focus of attention in population genomics, but mitotic conversion has been relatively overlooked as it was thought to be rare. Analysis in plants suggests that this could be a mistake; long tract lengths and multiple mitoses in species lacking germline sequestration suggest that mitotic conversion, although rare per mitosis, should not be ignored.
Collapse
Affiliation(s)
- Xianqing Jia
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qijun Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sihai Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
6
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
7
|
Abstract
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.
Collapse
Affiliation(s)
- Katarzyna Siudeja
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| | - Allison J Bardin
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| |
Collapse
|