1
|
Nirala NK, Li Q, Ghule PN, Chen HJ, Li R, Zhu LJ, Wang R, Rice NP, Mao J, Stein JL, Stein GS, van Wijnen AJ, Ip YT. Hinfp is a guardian of the somatic genome by repressing transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2100839118. [PMID: 34620709 PMCID: PMC8521681 DOI: 10.1073/pnas.2100839118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Prachi N Ghule
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nicholas P Rice
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Junhao Mao
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
2
|
Liu S, Sun X, Li K, Zha R, Feng Y, Sano T, Dong C, Liu Y, Aryal UK, Sudo A, Li BY, Yokota H. Generation of the tumor-suppressive secretome from tumor cells. Am J Cancer Res 2021; 11:8517-8534. [PMID: 34373756 PMCID: PMC8344019 DOI: 10.7150/thno.61006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: The progression of cancer cells depends on the soil and building an inhibitory soil might be a therapeutic option. We previously created tumor-suppressive secretomes by activating Wnt signaling in MSCs. Here, we examined whether the anti-tumor secretomes can be produced from tumor cells. Methods: Wnt signaling was activated in tumor cells by overexpressing β-catenin or administering BML284, a Wnt activator. Their conditioned medium (CM) was applied to cancer cells or tissues, and the effects of CM were evaluated. Tumor growth in the mammary fat pad and tibia in C57BL/6 female mice was also evaluated through μCT imaging and histology. Whole-genome proteomics analysis was conducted to determine and characterize novel tumor-suppressing proteins, which were enriched in CM. Results: The overexpression of β-catenin or the administration of BML284 generated tumor-suppressive secretomes from breast, prostate and pancreatic cancer cells. In the mouse model, β-catenin-overexpressing CM reduced tumor growth and tumor-driven bone destruction. This inhibition was also observed with BML284-treated CM. Besides p53 and Trail, proteomics analysis revealed that CM was enriched with enolase 1 (Eno1) and ubiquitin C (Ubc) that presented notable tumor-suppressing actions. Importantly, Eno1 immunoprecipitated CD44, a cell-surface adhesion receptor, and its silencing suppressed Eno1-driven tumor inhibition. A pan-cancer survival analysis revealed that the downregulation of MMP9, Runx2 and Snail by CM had a significant impact on survival outcomes (p < 0.00001). CM presented a selective inhibition of tumor cells compared to non-tumor cells, and it downregulated PD-L1, an immune escape modulator. Conclusions: The tumor-suppressive secretome can be generated from tumor cells, in which β-catenin presented two opposing roles, as an intracellular tumor promoter in tumor cells and a generator of extracellular tumor suppressor in CM. Eno1 was enriched in CM and its interaction with CD44 was involved in Eno1's anti-tumor action. Besides presenting a potential option for treating primary cancers and metastases, the result indicates that aggressive tumors may inhibit the growth of less aggressive tumors via tumor-suppressive secretomes.
Collapse
|
3
|
Balmer P, Hariton WVJ, Sayar BS, Jagannathan V, Galichet A, Leeb T, Roosje P, Müller EJ. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J Cell Biol 2021; 220:211810. [PMID: 33604655 PMCID: PMC7898489 DOI: 10.1083/jcb.201908178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.
Collapse
Affiliation(s)
- Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beyza S Sayar
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Galichet
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Sau S, Ghosh SK, Liu YT, Ma CH, Jayaram M. Hitchhiking on chromosomes: A persistence strategy shared by diverse selfish DNA elements. Plasmid 2019; 102:19-28. [PMID: 30726706 DOI: 10.1016/j.plasmid.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
An underlying theme in the segregation of low-copy bacterial plasmids is the assembly of a 'segrosome' by DNA-protein and protein-protein interactions, followed by energy-driven directed movement. Analogous partitioning mechanisms drive the segregation of host chromosomes as well. Eukaryotic extra-chromosomal elements, exemplified by budding yeast plasmids and episomes of certain mammalian viruses, harbor partitioning systems that promote their physical association with chromosomes. In doing so, they indirectly take advantage of the spindle force that directs chromosome movement to opposite cell poles. Molecular-genetic, biochemical and cell biological studies have revealed several unsuspected aspects of 'chromosome hitchhiking' by the yeast 2-micron plasmid, including the ability of plasmid sisters to associate symmetrically with sister chromatids. As a result, the plasmid overcomes the 'mother bias' experienced by plasmids lacking a partitioning system, and elevates itself to near chromosome status in equal segregation. Chromosome association for stable propagation, without direct energy expenditure, may also be utilized by a small minority of bacterial plasmids-at least one case has been reported. Given the near perfect accuracy of chromosome segregation, it is not surprising that elements residing in evolutionarily distant host organisms have converged upon the common strategy of gaining passage to daughter cells as passengers on chromosomes.
Collapse
Affiliation(s)
- Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yen-Ting Liu
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA.
| |
Collapse
|