1
|
Hrach HC, O'Brien S, Steber HS, Newbern J, Rawls A, Mangone M. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. Hum Mol Genet 2021; 29:1607-1623. [PMID: 32227114 PMCID: PMC7322572 DOI: 10.1093/hmg/ddaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by nonsense and missense mutations in the dystrophin gene, leading to instability of the sarcolemma and skeletal muscle necrosis and atrophy. Resulting changes in muscle-specific gene expression that take place in dystrophin's absence remain largely uncharacterized, as they are potentially obscured by the chronic inflammation elicited by muscle damage in humans. Caenorhabditis elegans possess a mild inflammatory response that is not active in the muscle, and lack a satellite cell equivalent. This allows for the characterization of the transcriptome rearrangements affecting disease progression independently of inflammation and regeneration. In effort to better understand these dynamics, we have isolated and sequenced body muscle-specific transcriptomes from C. elegans lacking functional dystrophin at distinct stages of disease progression. We have identified an upregulation of genes involved in mitochondrial function early in disease progression, and an upregulation of genes related to muscle repair in later stages. Our results suggest that in C. elegans, dystrophin may have a signaling role early in development, and its absence may activate compensatory mechanisms that counteract muscle degradation caused by loss of dystrophin. We have also developed a temperature-based screening method for synthetic paralysis that can be used to rapidly identify genetic partners of dystrophin. Our results allow for the comprehensive identification of transcriptome changes that potentially serve as independent drivers of disease progression and may in turn allow for the identification of new therapeutic targets for the treatment of DMD.
Collapse
Affiliation(s)
- Heather C Hrach
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA.,Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Shannon O'Brien
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.,Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Hannah S Steber
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Jason Newbern
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Alan Rawls
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Levin M, Zalts H, Mostov N, Hashimshony T, Yanai I. Gene expression dynamics are a proxy for selective pressures on alternatively polyadenylated isoforms. Nucleic Acids Res 2020; 48:5926-5938. [PMID: 32421815 PMCID: PMC7293032 DOI: 10.1093/nar/gkaa359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Alternative polyadenylation (APA) produces isoforms with distinct 3′-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3′-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3′ UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3′ UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.
Collapse
Affiliation(s)
- Michal Levin
- Quantitative Proteomics, Institute of Molecular Biology, Mainz 55128, Germany
| | - Harel Zalts
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Mostov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York 10016, USA
| |
Collapse
|