1
|
Said I, Barbash DA, Clark AG. The Structure of Simple Satellite Variation in the Human Genome and Its Correlation With Centromere Ancestry. Genome Biol Evol 2024; 16:evae153. [PMID: 39018452 PMCID: PMC11305138 DOI: 10.1093/gbe/evae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Although repetitive DNA forms much of the human genome, its study is challenging due to limitations in assembly and alignment of repetitive short-reads. We have deployed k-Seek, software that detects tandem repeats embedded in single reads, on 2,504 human genomes from the 1,000 Genomes Project to quantify the variation and abundance of simple satellites (repeat units <20 bp). We find that the ancestral monomer of Human Satellite 3 makes up the largest portion of simple satellite content in humans (mean of ∼8 Mb). We discovered ∼50,000 rare tandem repeats that are not detected in the T2T-CHM13v2.0 assembly, including undescribed variants of telomericand pericentromeric repeats. We find broad homogeneity of the most abundant repeats across populations, except for AG-rich repeats which are more abundant in African individuals. We also find cliques of highly similar AG- and AT-rich satellites that are interspersed and form higher-order structures that covary in copy number across individuals, likely through concerted amplification via unequal exchange. Finally, we use pericentromeric polymorphisms to estimate centromeric genetic relatedness between individuals and find a strong predictive relationship between centromeric lineages and pericentromeric simple satellite abundances. In particular, ancestral monomers of Human Satellite 2 and Human Satellite 3 abundances correlate with clusters of centromeric ancestry on chromosome 16 and chromosome 9, with some clusters structured by population. These results provide new descriptions of the population dynamics that underlie the evolution of simple satellites in humans.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Plavskin Y, de Biase MS, Ziv N, Janská L, Zhu YO, Hall DW, Schwarz RF, Tranchina D, Siegal ML. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects. PLoS Biol 2024; 22:e3002698. [PMID: 38950062 PMCID: PMC11244821 DOI: 10.1371/journal.pbio.3002698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of 2 common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (approximately 0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.
Collapse
Affiliation(s)
- Yevgeniy Plavskin
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Maria Stella de Biase
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany
| | - Naomi Ziv
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Libuše Janská
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Yuan O. Zhu
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - David W. Hall
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
| | - Daniel Tranchina
- Department of Biology, New York University, New York, New York, United States of America
- Courant Math Institute, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
3
|
Plavskin Y, de Biase MS, Ziv N, Janská L, Zhu YO, Hall DW, Schwarz RF, Tranchina D, Siegal ML. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.04.547687. [PMID: 37461506 PMCID: PMC10349969 DOI: 10.1101/2023.07.04.547687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of two common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (~0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.
Collapse
|
4
|
Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Semin Cell Dev Biol 2024; 156:152-159. [PMID: 37852904 DOI: 10.1016/j.semcdb.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.
Collapse
Affiliation(s)
- Jullien M Flynn
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Sharp NP, Smith DR, Driscoll G, Sun K, Vickerman CM, Martin SCT. Contribution of Spontaneous Mutations to Quantitative and Molecular Variation at the Highly Repetitive rDNA Locus in Yeast. Genome Biol Evol 2023; 15:evad179. [PMID: 37847861 PMCID: PMC10581546 DOI: 10.1093/gbe/evad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
The ribosomal DNA array in Saccharomyces cerevisiae consists of many tandem repeats whose copy number is believed to be functionally important but highly labile. Regulatory mechanisms have evolved to maintain copy number by directed mutation, but how spontaneous variation at this locus is generated and selected has not been well characterized. We applied a mutation accumulation approach to quantify the impacts of mutation and selection on this unique genomic feature across hundreds of mutant strains. We find that mutational variance for this trait is relatively high, and that unselected mutations elsewhere in the genome can disrupt copy number maintenance. In consequence, copy number generally declines gradually, consistent with a previously proposed model of rDNA maintenance where a downward mutational bias is normally compensated by mechanisms that increase copy number when it is low. This pattern holds across ploidy levels and strains in the standard lab environment but differs under some stressful conditions. We identify several alleles, gene categories, and genomic features that likely affect copy number, including aneuploidy for chromosome XII. Copy number change is associated with reduced growth in diploids, consistent with stabilizing selection. Levels of standing variation in copy number are well predicted by a balance between mutation and stabilizing selection, suggesting this trait is not subject to strong diversifying selection in the wild. The rate and spectrum of point mutations within the rDNA locus itself are distinct from the rest of the genome and predictive of polymorphism locations. Our findings help differentiate the roles of mutation and selection and indicate that spontaneous mutation patterns shape several aspects of ribosomal DNA evolution.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Denise R Smith
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gregory Driscoll
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kexin Sun
- Present address: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Sterling C T Martin
- Present address: Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Snyman M, Xu S. The effects of mutations on gene expression and alternative splicing. Proc Biol Sci 2023; 290:20230565. [PMID: 37403507 PMCID: PMC10320348 DOI: 10.1098/rspb.2023.0565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding the relationship between mutations and their genomic and phenotypic consequences has been a longstanding goal of evolutionary biology. However, few studies have investigated the impact of mutations on gene expression and alternative splicing on the genome-wide scale. In this study, we aim to bridge this knowledge gap by utilizing whole-genome sequencing data and RNA sequencing data from 16 obligately parthenogenetic Daphnia mutant lines to investigate the effects of ethyl methanesulfonate-induced mutations on gene expression and alternative splicing. Using rigorous analyses of mutations, expression changes and alternative splicing, we show that trans-effects are the major contributor to the variance in gene expression and alternative splicing between the wild-type and mutant lines, whereas cis mutations only affected a limited number of genes and do not always alter gene expression. Moreover, we show that there is a significant association between differentially expressed genes and exonic mutations, indicating that exonic mutations are an important driver of altered gene expression.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
7
|
Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res 2022; 30:309-333. [PMID: 36208359 DOI: 10.1007/s10577-022-09707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.
Collapse
|
8
|
Population Scale Analysis of Centromeric Satellite DNA Reveals Highly Dynamic Evolutionary Patterns and Genomic Organization in Long-Tailed and Rhesus Macaques. Cells 2022; 11:cells11121953. [PMID: 35741082 PMCID: PMC9221937 DOI: 10.3390/cells11121953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.
Collapse
|
9
|
Ho EKH, Bellis ES, Calkins J, Adrion JR, Latta IV LC, Schaack S. Engines of change: Transposable element mutation rates are high and variable within Daphnia magna. PLoS Genet 2021; 17:e1009827. [PMID: 34723969 PMCID: PMC8594854 DOI: 10.1371/journal.pgen.1009827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) represent a major portion of most eukaryotic genomes, yet little is known about their mutation rates or how their activity is shaped by other evolutionary forces. Here, we compare short- and long-term patterns of genome-wide mutation accumulation (MA) of TEs among 9 genotypes from three populations of Daphnia magna from across a latitudinal gradient. While the overall proportion of the genome comprised of TEs is highly similar among genotypes from Finland, Germany, and Israel, populations are distinguishable based on patterns of insertion site polymorphism. Our direct rate estimates indicate TE movement is highly variable (net rates ranging from -11.98 to 12.79 x 10-5 per copy per generation among genotypes), differing both among populations and TE families. Although gains outnumber losses when selection is minimized, both types of events appear to be highly deleterious based on their low frequency in control lines where propagation is not limited to random, single-progeny descent. With rate estimates 4 orders of magnitude higher than base substitutions, TEs clearly represent a highly mutagenic force in the genome. Quantifying patterns of intra- and interspecific variation in TE mobility with and without selection provides insight into a powerful mechanism generating genetic variation in the genome.
Collapse
Affiliation(s)
- Eddie K. H. Ho
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Emily S. Bellis
- Department of Biology, Reed College, Portland, Oregon, United States of America
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Jaclyn Calkins
- Department of Biology, Reed College, Portland, Oregon, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey R. Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Leigh C. Latta IV
- Department of Biology, Reed College, Portland, Oregon, United States of America
- Lewis-Clark State College, Lewiston, Idaho, United States of America
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, United States of America
| |
Collapse
|
10
|
Natural selection at the RASGEF1C (GGC) repeat in human and divergent genotypes in late-onset neurocognitive disorder. Sci Rep 2021; 11:19235. [PMID: 34584172 PMCID: PMC8479062 DOI: 10.1038/s41598-021-98725-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Expression dysregulation of the neuron-specific gene, RASGEF1C (RasGEF Domain Family Member 1C), occurs in late-onset neurocognitive disorders (NCDs), such as Alzheimer's disease. This gene contains a (GGC)13, spanning its core promoter and 5' untranslated region (RASGEF1C-201 ENST00000361132.9). Here we sequenced the (GGC)-repeat in a sample of human subjects (N = 269), consisting of late-onset NCDs (N = 115) and controls (N = 154). We also studied the status of this STR across various primate and non-primate species based on Ensembl 103. The 6-repeat allele was the predominant allele in the controls (frequency = 0.85) and NCD patients (frequency = 0.78). The NCD genotype compartment consisted of an excess of genotypes that lacked the 6-repeat (divergent genotypes) (Mid-P exact = 0.004). A number of those genotypes were not detected in the control group (Mid-P exact = 0.007). The RASGEF1C (GGC)-repeat expanded beyond 2-repeats specifically in primates, and was at maximum length in human. We conclude that there is natural selection for the 6-repeat allele of the RASGEF1C (GGC)-repeat in human, and significant divergence from that allele in late-onset NCDs. STR alleles that are predominantly abundant and genotypes that deviate from those alleles are underappreciated features, which may have deep evolutionary and pathological consequences.
Collapse
|
11
|
Flynn JM, Brown EJ, Clark AG. Copy number evolution in simple and complex tandem repeats across the C57BL/6 and C57BL/10 inbred mouse lines. G3 GENES|GENOMES|GENETICS 2021; 11:6287064. [PMID: 34849804 PMCID: PMC8496272 DOI: 10.1093/g3journal/jkab184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
Simple sequence tandem repeats are among the most rapidly evolving compartments of the genome. Some repeat expansions are associated with mammalian disease or meiotic segregation distortion, yet the rates of copy number change across generations are not well known. Here, we use 14 distinct sublineages of the C57BL/6 and C57BL/10 inbred mouse strains, which have been evolving independently over about 300 generations, to estimate the rates of copy number changes in genome-wide tandem repeats. Rates of change varied across repeats and across lines. Notably, CAG, whose expansions in coding regions are associated with many neurological and genetic disorders, was highly stable in copy number, likely indicating stabilizing selection. Rates of change were positively correlated with copy number, but the direction and magnitude of changes varied across lines. Some mouse lines experienced consistent losses or gains across most simple repeats, but this did not correlate with copy number changes in complex repeats. Rates of copy number change were similar between simple repeats and the more abundant complex repeats after normalization by copy number. Finally, the Y-specific centromeric repeat had a fourfold higher rate of change than the homologous centromeric repeat on other chromosomes. Structural differences in satellite complexity, or restriction to the Y chromosome and elevated mutation rates of the male germline, may explain the higher rate of change. Overall, our work underscores the mutational fluidity of long tandem arrays of repeats, and the correlations and constraints between genome-wide tandem repeats, which suggest that turnover is not a completely neutral process.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Emily J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, Agabekian IA, Young PG, Razzaque S, Shippen DE, Juenger TE, Shakirov EV, Purugganan MD. Natural variation in plant telomere length is associated with flowering time. THE PLANT CELL 2021; 33:1118-1134. [PMID: 33580702 PMCID: PMC8599780 DOI: 10.1093/plcell/koab022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration duringcell division. Here, using whole-genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life-history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life-history strategies.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Jun Yin
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Inna B Chastukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Alabama 35806, USA
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Eugene V Shakirov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, West Virginia 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia 25755, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| |
Collapse
|
13
|
Brown EJ, Nguyen AH, Bachtrog D. The Drosophila Y Chromosome Affects Heterochromatin Integrity Genome-Wide. Mol Biol Evol 2021; 37:2808-2824. [PMID: 32211857 PMCID: PMC7530609 DOI: 10.1093/molbev/msaa082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila Y chromosome is gene poor and mainly consists of silenced, repetitive DNA. Nonetheless, the Y influences expression of hundreds of genes genome-wide, possibly by sequestering key components of the heterochromatin machinery away from other positions in the genome. To test the influence of the Y chromosome on the genome-wide chromatin landscape, we assayed the genomic distribution of histone modifications associated with gene activation (H3K4me3) or heterochromatin (H3K9me2 and H3K9me3) in fruit flies with varying sex chromosome complements (X0, XY, and XYY males; XX and XXY females). Consistent with the general deficiency of active chromatin modifications on the Y, we find that Y gene dose has little influence on the genomic distribution of H3K4me3. In contrast, both the presence and the number of Y chromosomes strongly influence genome-wide enrichment patterns of repressive chromatin modifications. Highly repetitive regions such as the pericentromeres, the dot, and the Y chromosome (if present) are enriched for heterochromatic modifications in wildtype males and females, and even more strongly in X0 flies. In contrast, the additional Y chromosome in XYY males and XXY females diminishes the heterochromatic signal in these normally silenced, repeat-rich regions, which is accompanied by an increase in expression of Y-linked repeats. We find hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila. Thus, Y chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex-biased gene expression and sexual dimorphisms.
Collapse
Affiliation(s)
- Emily J Brown
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Alison H Nguyen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
14
|
Ho EKH, Macrae F, Latta LC, McIlroy P, Ebert D, Fields PD, Benner MJ, Schaack S. High and Highly Variable Spontaneous Mutation Rates in Daphnia. Mol Biol Evol 2021; 37:3258-3266. [PMID: 32520985 PMCID: PMC7820357 DOI: 10.1093/molbev/msaa142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rate and spectrum of spontaneous mutations are critical parameters in basic and applied biology because they dictate the pace and character of genetic variation introduced into populations, which is a prerequisite for evolution. We use a mutation–accumulation approach to estimate mutation parameters from whole-genome sequence data from multiple genotypes from multiple populations of Daphnia magna, an ecological and evolutionary model system. We report extremely high base substitution mutation rates (µ-n,bs = 8.96 × 10−9/bp/generation [95% CI: 6.66–11.97 × 10−9/bp/generation] in the nuclear genome and µ-m,bs = 8.7 × 10−7/bp/generation [95% CI: 4.40–15.12 × 10−7/bp/generation] in the mtDNA), the highest of any eukaryote examined using this approach. Levels of intraspecific variation based on the range of estimates from the nine genotypes collected from three populations (Finland, Germany, and Israel) span 1 and 3 orders of magnitude, respectively, resulting in up to a ∼300-fold difference in rates among genomic partitions within the same lineage. In contrast, mutation spectra exhibit very consistent patterns across genotypes and populations, suggesting the mechanisms underlying the mutational process may be similar, even when the rates at which they occur differ. We discuss the implications of high levels of intraspecific variation in rates, the importance of estimating gene conversion rates using a mutation–accumulation approach, and the interacting factors influencing the evolution of mutation parameters. Our findings deepen our knowledge about mutation and provide both challenges to and support for current theories aimed at explaining the evolution of the mutation rate, as a trait, across taxa.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, OR
| | | | - Leigh C Latta
- Department of Biology, Reed College, Portland, OR.,Division of Natural Sciences and Mathematics, Lewis-Clark State College, Lewiston, ID
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
15
|
Flynn JM, Long M, Wing RA, Clark AG. Evolutionary Dynamics of Abundant 7-bp Satellites in the Genome of Drosophila virilis. Mol Biol Evol 2021; 37:1362-1375. [PMID: 31960929 DOI: 10.1093/molbev/msaa010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The factors that drive the rapid changes in abundance of tandem arrays of highly repetitive sequences, known as satellite DNA, are not well understood. Drosophila virilis has one of the highest relative amounts of simple satellites of any organism that has been studied, with an estimated >40% of its genome composed of a few related 7-bp satellites. Here, we use D. virilis as a model to understand technical biases affecting satellite sequencing and the evolutionary processes that drive satellite composition. By analyzing sequencing data from Illumina, PacBio, and Nanopore platforms, we identify platform-specific biases and suggest best practices for accurate characterization of satellites by sequencing. We use comparative genomics and cytogenetics to demonstrate that the highly abundant AAACTAC satellite family arose from a related satellite in the branch leading to the virilis phylad 4.5-11 Ma before exploding in abundance in some species of the clade. The most abundant satellite is conserved in sequence and location in the pericentromeric region but has diverged widely in abundance among species, whereas the satellites nearest the centromere are rapidly turning over in sequence composition. By analyzing multiple strains of D. virilis, we saw that the abundances of two centromere-proximal satellites are anticorrelated along a geographical gradient, which we suggest could be caused by ongoing conflicts at the centromere. In conclusion, we illuminate several key attributes of satellite evolutionary dynamics that we hypothesize to be driven by processes including selection, meiotic drive, and constraints on satellite sequence and abundance.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Rod A Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
16
|
Ho EKH, Macrae F, Latta LC, Benner MJ, Sun C, Ebert D, Schaack S. Intraspecific Variation in Microsatellite Mutation Profiles in Daphnia magna. Mol Biol Evol 2020; 36:1942-1954. [PMID: 31077327 PMCID: PMC6934441 DOI: 10.1093/molbev/msz118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microsatellite loci (tandem repeats of short nucleotide motifs) are highly abundant in eukaryotic genomes and often used as genetic markers because they can exhibit variation both within and between populations. Although widely recognized for their mutability and utility, the mutation rates of microsatellites have only been empirically estimated in a few species, and have rarely been compared across genotypes and populations within a species. Here, we investigate the dynamics of microsatellite mutation over long- and short-time periods by quantifying the starting abundance and mutation rates for microsatellites for six different genotypes of Daphnia magna, an aquatic microcrustacean, collected from three populations (Finland, Germany, and Israel). Using whole-genome sequences of these six starting genotypes, descendent mutation accumulation (MA) lines, and large population controls (non-MA lines), we find each genotype exhibits a distinctive initial microsatellite profile which clusters according to the population-of-origin. During the period of MA, we observe motif-specific, highly variable, and rapid microsatellite mutation rates across genotypes of D. magna, the average of which is order of magnitude greater than the recently reported rate observed in a single genotype of the congener, Daphnia pulex. In our experiment, genotypes with more microsatellites starting out exhibit greater losses and those with fewer microsatellites starting out exhibit greater gains—a context-dependent mutation bias that has not been reported previously. We discuss how genotype-specific mutation rates and spectra, in conjunction with evolutionary forces, can shape both the differential accumulation of repeat content in the genome and the evolution of mutation rates.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, OR
| | | | - Leigh C Latta
- Department of Biology, Reed College, Portland, OR
- Division of Natural Sciences and Mathematics, Lewis-Clark State College, Lewiston, ID
| | | | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR
- Corresponding author: E-mail:
| |
Collapse
|
17
|
Kinsella CM, Ruiz-Ruano FJ, Dion-Côté AM, Charles AJ, Gossmann TI, Cabrero J, Kappei D, Hemmings N, Simons MJP, Camacho JPM, Forstmeier W, Suh A. Programmed DNA elimination of germline development genes in songbirds. Nat Commun 2019; 10:5468. [PMID: 31784533 PMCID: PMC6884545 DOI: 10.1038/s41467-019-13427-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline–soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits. Songbirds have extensive germline–soma genome differences due to developmental elimination of a germline-specific chromosome (GRC). Here, the authors show that the GRC contains dozens of expressed developmental genes, some of which have been on the GRC since the ancestor of all songbirds.
Collapse
Affiliation(s)
- Cormac M Kinsella
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.,Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francisco J Ruiz-Ruano
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden. .,Department of Genetics, University of Granada, E-18071, Granada, Spain. .,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.
| | - Anne-Marie Dion-Côté
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.,Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.,Département de Biologie, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Alexander J Charles
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK.,Department of Animal Behaviour, Bielefeld University, D-33501, Bielefeld, Germany
| | - Josefa Cabrero
- Department of Genetics, University of Granada, E-18071, Granada, Spain
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Mirre J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
| | | | | | - Alexander Suh
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden. .,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
18
|
Cechova M, Harris RS, Tomaszkiewicz M, Arbeithuber B, Chiaromonte F, Makova KD. High Satellite Repeat Turnover in Great Apes Studied with Short- and Long-Read Technologies. Mol Biol Evol 2019; 36:2415-2431. [PMID: 31273383 PMCID: PMC6805231 DOI: 10.1093/molbev/msz156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022] Open
Abstract
Satellite repeats are a structural component of centromeres and telomeres, and in some instances, their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: 1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and 2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However, clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males versus females; using Y chromosome assemblies or Fluorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.
Collapse
Affiliation(s)
- Monika Cechova
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA
| | | | | | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, PA
- EMbeDS, Sant’Anna School of Advanced Studies, Pisa, Italy
- Center for Medical Genomics, Penn State, University Park, PA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA
- Center for Medical Genomics, Penn State, University Park, PA
| |
Collapse
|
19
|
Cai M, Liu Z, Chen M, Huang Y, Zhang M, Jiao Y, Zhao Y. Changes in ultrastructure of gonads and external morphology during aging in the parthenogenetic cladoceran Daphnia pulex. Micron 2019; 122:1-7. [DOI: 10.1016/j.micron.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023]
|
20
|
Flynn JM, Lower SE, Barbash DA, Clark AG. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii. Genome Biol Evol 2018; 10:1673-1686. [PMID: 29931069 PMCID: PMC6041958 DOI: 10.1093/gbe/evy123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
The mutational patterns of large tandem arrays of short sequence repeats remain largely unknown, despite observations of their high levels of variation in sequence and genomic abundance within and between species. Many factors can influence the dynamics of tandem repeat evolution; however, their evolution has only been examined over a limited phylogenetic sample of taxa. Here, we use publicly available whole-genome sequencing data of 85 haploid mutation accumulation lines derived from six geographically diverse Chlamydomonas reinhardtii isolates to investigate genome-wide mutation rates and patterns in tandem repeats in this species. We find that tandem repeat composition differs among ancestral strains, both in genome-wide abundance and presence/absence of individual repeats. Estimated mutation rates (repeat copy number expansion and contraction) were high, averaging 4.3×10−4 per generation per single unit copy. Although orders of magnitude higher than other types of mutation previously reported in C. reinhardtii, these tandem repeat mutation rates were one order of magnitude lower than what has recently been found in Daphnia pulex, even after correcting for lower overall genome-wide satellite abundance in C. reinhardtii. Most high-abundance repeats were related to others by a single mutational step. Correlations of repeat copy number changes within genomes revealed clusters of closely related repeats that were strongly correlated positively or negatively, and similar patterns of correlation arose independently in two different mutation accumulation experiments. Together, these results paint a dynamic picture of tandem repeat evolution in this unicellular alga.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Sarah E Lower
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
21
|
Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 2018; 49:70-78. [PMID: 29579574 PMCID: PMC5975084 DOI: 10.1016/j.gde.2018.03.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022]
Abstract
A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we describe some of these tools and how their applications are furthering our knowledge of satellite evolution and function.
Collapse
Affiliation(s)
- Sarah Sander Lower
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States
| | - Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14853, United States.
| |
Collapse
|