1
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
2
|
Characterizing and Targeting Genes Regulated by Transcription Factor MYBL2 in Lung Adenocarcinoma Cells. Cancers (Basel) 2022; 14:cancers14204979. [PMID: 36291764 PMCID: PMC9599349 DOI: 10.3390/cancers14204979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/16/2023] Open
Abstract
Overexpression of MYBL2 is associated with poor survival of lung adenocarcinoma patients, but the molecular mechanism by which it regulates transcription and carcinogenesis has not yet been elucidated. In this study, we performed ChIP-seq using an MYBL2-targeted antibody and discovered that MYBL2 primarily binds to the promoters of highly expressed genes in lung adenocarcinoma cells. Using a knockdown experiment of MYBL2 and global transcriptome profiling, we identified that over a thousand genes are dysregulated by MYBL2, and MYBL2 acts as a transcriptional activator in lung adenocarcinoma cells. Moreover, we revealed that the binding sites of FOXM1 are largely shared with MYBL2 binding sites, and genes involved in cell cycle phase transitions are regulated by these transcription factors. We furthermore investigated the effect of a previously reported FOXM1 inhibitor, FDI-6, in lung adenocarcinoma cells. We demonstrated that FDI-6 decreases the proliferation of lung adenocarcinoma cells and inhibits the activities of FOXM1 as well as MYBL2. Moreover, we found that genes involved in cell death and cell cycle are inhibited by FDI-6. Overall, our findings suggest that MYBL2 and FOXM1 activate cell cycle genes together, acting as oncogenic transcription factors in lung adenocarcinoma cells, and they are potential treatment targets for the disease.
Collapse
|
3
|
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Semin Cell Dev Biol 2022; 135:24-34. [PMID: 35422390 DOI: 10.1016/j.semcdb.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.
Collapse
|
4
|
Ccp1-Ndc80 switch at the N terminus of CENP-T regulates kinetochore assembly. Proc Natl Acad Sci U S A 2021; 118:2104459118. [PMID: 34810257 PMCID: PMC8640933 DOI: 10.1073/pnas.2104459118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Precise chromosome segregation relies on kinetochores. How kinetochores are precisely assembled on centromeres through the cell cycle remains poorly understood. Centromeres in most eukaryotes are epigenetically marked by nucleosomes containing the histone H3 variant, CENP-A. Here, we demonstrated that Ccp1, an anti–CENP-A loading factor, interacts with the N terminus of CENP-T to promote the assembly of the outer kinetochore Ndc80 complex. This work further suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis. In addition, CENP-T is critical for Ccp1 centromeric localization, which in turn regulates CENP-A distribution. Our results reveal a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle. Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain–deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.
Collapse
|
5
|
Dong Q, Yang J, Gao J, Li F. Recent insights into mechanisms preventing ectopic centromere formation. Open Biol 2021; 11:210189. [PMID: 34493071 PMCID: PMC8424319 DOI: 10.1098/rsob.210189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The centromere is a specialized chromosomal structure essential for chromosome segregation. Centromere dysfunction leads to chromosome segregation errors and genome instability. In most eukaryotes, centromere identity is specified epigenetically by CENP-A, a centromere-specific histone H3 variant. CENP-A replaces histone H3 in centromeres, and nucleates the assembly of the kinetochore complex. Mislocalization of CENP-A to non-centromeric regions causes ectopic assembly of CENP-A chromatin, which has a devastating impact on chromosome segregation and has been linked to a variety of human cancers. How non-centromeric regions are protected from CENP-A misincorporation in normal cells is largely unexplored. Here, we review the most recent advances on the mechanisms underlying the prevention of ectopic centromere formation, and discuss the implications in human disease.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinpu Yang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003-6688, USA
| |
Collapse
|
6
|
Centromeric chromatin integrity is compromised by loss of Cdk5rap2, a transcriptional activator of CENP-A. Biomed Pharmacother 2021; 138:111463. [PMID: 33725591 DOI: 10.1016/j.biopha.2021.111463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Centromeres are chromosomal loci where kinetochores assemble to ensure faithful chromosome segregation during mitosis. CENP-A defines the loci by serving as an epigenetic marker that recruits other centromere components for a functional structure. However, the mechanism that controls CENP-A regulation of centromeric chromatin integrity remains to be explored. Separate studies have shown that loss of CENP-A or the Cdk5 regulatory subunit associated protein 2 (Cdk5rap2), a key player in mitotic progression, triggers the occurrence of lagging chromosomes. This prompted us to investigate a potential link between CENP-A and Cdk5rap2 in the maintenance of centromeric chromatin integrity. Here, we demonstrate that loss of Cdk5rap2 causes reduced CENP-A expression while exogenous Cdk5rap2 expression in cells depleted of endogenous Cdk5rap2 restores CENP-A expression. Indeed, we show that Cdk5rap2 is a nuclear protein that acts as a positive transcriptional regulator of CENP-A. Cdk5rap2 interacts with the CENP-A promoter and upregulates CENP-A transcription. Accordingly, loss of Cdk5rap2 causes reduced level of centromeric CENP-A. Exogenous CENP-A expression partially inhibits the occurrence of lagging chromosomes in Cdk5rap2 knockdown cells, indicating that lagging chromosomes induced by loss of Cdk5rap2 is due, in part, to loss of CENP-A. Aside from manifesting lagging chromosomes, cells depleted of Cdk5rap2, and thus CENP-A, show increased micronuclei and chromatin bridge formation. Altogether, our findings indicate that Cdk5rap2 serves to maintain centromeric chromatin integrity partly through CENP-A.
Collapse
|
7
|
Weigt M, Gao Q, Ban H, He H, Mastrobuoni G, Kempa S, Chen W, Li F. Rbm10 facilitates heterochromatin assembly via the Clr6 HDAC complex. Epigenetics Chromatin 2021; 14:8. [PMID: 33468217 PMCID: PMC7816512 DOI: 10.1186/s13072-021-00382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/08/2021] [Indexed: 01/13/2023] Open
Abstract
Splicing factors have recently been shown to be involved in heterochromatin formation, but their role in controlling heterochromatin structure and function remains poorly understood. In this study, we identified a fission yeast homologue of human splicing factor RBM10, which has been linked to TARP syndrome. Overexpression of Rbm10 in fission yeast leads to strong global intron retention. Rbm10 also interacts with splicing factors in a pattern resembling that of human RBM10, suggesting that the function of Rbm10 as a splicing regulator is conserved. Surprisingly, our deep-sequencing data showed that deletion of Rbm10 caused only minor effect on genome-wide gene expression and splicing. However, the mutant displays severe heterochromatin defects. Further analyses indicated that the heterochromatin defects in the mutant did not result from mis-splicing of heterochromatin factors. Our proteomic data revealed that Rbm10 associates with the histone deacetylase Clr6 complex and chromatin remodelers known to be important for heterochromatin silencing. Deletion of Rbm10 results in significant reduction of Clr6 in heterochromatin. Our work together with previous findings further suggests that different splicing subunits may play distinct roles in heterochromatin regulation.
Collapse
Affiliation(s)
- Martina Weigt
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Haijin He
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Guido Mastrobuoni
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China. .,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003-6688, USA.
| |
Collapse
|
8
|
Takayama Y. Identification of Genes Encoding CENP-A and Heterochromatin Protein 1 of Lipomyces starkeyi and Functional Analysis Using Schizosaccharomyces pombe. Genes (Basel) 2020; 11:genes11070769. [PMID: 32650514 PMCID: PMC7397231 DOI: 10.3390/genes11070769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Centromeres function as a platform for the assembly of multiple kinetochore proteins and are essential for chromosome segregation. An active centromere is characterized by the presence of a centromere-specific histone H3 variant, CENP-A. Faithful centromeric localization of CENP-A is supported by heterochromatin in almost all eukaryotes; however, heterochromatin proteins have been lost in most Saccharomycotina. Here, identification of CENP-A (CENP-AL.s.) and heterochromatin protein 1 (Lsw1) in a Saccharomycotina species, the oleaginous yeast Lipomyces starkeyi, is reported. To determine if these proteins are functional, the proteins in S. pombe, a species widely used to study centromeres, were ectopically expressed. CENP-AL.s. localizes to centromeres and can be replaced with S. pombe CENP-A, indicating that CENP-AL.s. is a functional centromere-specific protein. Lsw1 binds at heterochromatin regions, and chromatin binding is dependent on methylation of histone H3 at lysine 9. In other species, self-interaction of heterochromatin protein 1 is thought to cause folding of chromatin, triggering transcription repression and heterochromatin formation. Consistent with this, it was found that Lsw1 can self-interact. L. starkeyi chromatin contains the methylation of histone H3 at lysine 9. These results indicated that L. starkeyi has a primitive heterochromatin structure and is an attractive model for analysis of centromere heterochromatin evolution.
Collapse
Affiliation(s)
- Yuko Takayama
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320–8551, Japan; ; Tel.: +81-28-627-7242
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1–1 Toyosatodai, Utsunomiya, Tochigi 320–8551, Japan
| |
Collapse
|
9
|
Au WC, Zhang T, Mishra PK, Eisenstatt JR, Walker RL, Ocampo J, Dawson A, Warren J, Costanzo M, Baryshnikova A, Flick K, Clark DJ, Meltzer PS, Baker RE, Myers C, Boone C, Kaiser P, Basrai MA. Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast. PLoS Genet 2020; 16:e1008597. [PMID: 32032354 PMCID: PMC7032732 DOI: 10.1371/journal.pgen.1008597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/20/2020] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) to centromeres is essential for faithful chromosome segregation. Mislocalization of CENP-A leads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression and mislocalization of CENP-A has been observed in many cancers and this correlates with increased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels and localization under physiological conditions have not been defined. In this study we used a genome-wide genetic screen to identify essential genes required for Cse4 homeostasis to prevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, F-box (SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 and Cdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent its mislocalization for faithful chromosome segregation under physiological conditions. The interaction of Met30 with Cdc4 is independent of the D domain, which is essential for their homodimerization and ubiquitination of other substrates. The requirement for both Cdc4 and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 and Met30 has not previously been described. Met30 is necessary for the interaction between Cdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization of Cse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalization to defects in kinetochore structure and show that SCF-mediated proteolysis of Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromeric regions, thus ensuring faithful chromosome segregation. In summary, we have identified essential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysis of Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells. Genetic material on each chromosome must be faithfully transmitted to the daughter cell during cell division and chromosomal instability (CIN) results in aneuploidy, a hallmark of cancers. The kinetochore (centromeric DNA and associated proteins) regulates faithful chromosome segregation. Restricting the localization of CENP-A (Cse4 in yeast) to kinetochores is essential for chromosomal stability. Mislocalization of CENP-A contributes to CIN in yeast, fly and human cells and is observed in cancers where it correlates with increased invasiveness and poor prognosis. Hence, identification of pathways that regulate CENP-A levels will help us understand the correlation between CENP-A mislocalization and aneuploidy in cancers. We used a genetic screen to identify essential genes for Cse4 homeostasis and identified a major ubiquitin-dependent pathway where both nuclear F-box proteins, Met30 and Cdc4 of the SCF complex, cooperatively regulate proteolysis of Cse4 to prevent its mislocalization and CIN under physiological conditions. Our studies define a role for SCF-mediated proteolysis of Cse4 as a critical mechanism to ensure faithful chromosome segregation. These studies are significant because mutations in human homologs of Met30 (β-TrCP) and Cdc4 (Fbxw7) have been implicated in cancers, and future studies will determine if SCF-mediated proteolysis of CENP-A prevents its mislocalization for chromosomal stability in human cells.
Collapse
Affiliation(s)
- Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tianyi Zhang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Prashant K. Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jessica R. Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Josefina Ocampo
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Anthony Dawson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jack Warren
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | - Karin Flick
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA, United States of America
| | - David J. Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, United States of America
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Peter Kaiser
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA, United States of America
| | - Munira A. Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|