1
|
Reinar WB, Krabberød AK, Lalun VO, Butenko MA, Jakobsen KS. Short tandem repeats delineate gene bodies across eukaryotes. Nat Commun 2024; 15:10902. [PMID: 39738068 DOI: 10.1038/s41467-024-55276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown. Here, we identify monomer and dimer STR motif repetitiveness in 5.1 billion 10-bp windows upstream of translation starts and downstream of translation stops in 25 million genes spanning 1270 species across the eukaryotic Tree of Life. We report that all surveyed genomes have gene-proximal shifts in motif repetitiveness. Within genomes, variation in gene-proximal repetitiveness landscapes correlated to the function of genes; genes with housekeeping functions were depleted in upstream and downstream repetitiveness. Furthermore, the repetitiveness landscapes correlated with TF binding sites, indicating that gene function has evolved in conjunction with cis-regulatory STRs and TFs that recognize repetitive sites. These results suggest that the hypermutability inherent to STRs is canalized along the genome sequence and contributes to regulatory and eco-evolutionary dynamics in all eukaryotes.
Collapse
Affiliation(s)
- William B Reinar
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Anders K Krabberød
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde O Lalun
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Melinka A Butenko
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Cao Z, Dai L, Li J, Zhang J, Wang X, Xu A, Du H. Reproductive and germ-cell mutagenic effects of poly-and perfluoroalkyl substances (PFAS) to Caenorhabditis elegans after multigenerational exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176224. [PMID: 39270858 DOI: 10.1016/j.scitotenv.2024.176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of globally ubiquitous persistent organic pollutants (POPs). The developmental and reproductive toxicity of PFAS have attracted considerable attention. However, the influence of PFAS exposure on genomic stability of germ cells remains unexplored. In this study, we evaluated long-term reproductive toxicity of environmentally relevant levels of four long-chain PFAS compounds: perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10), and perfluorooctanesulfonic acid (PFOS, C8), and examined their germ-cell mutagenicity in Caenorhabditis elegans. Our findings reveal that multigenerational exposure to PFAS exhibited minor impacts on development and reproduction of worms. Among all tested PFAS, PFNA significantly increased mutation frequencies of progeny by preferentially inducing T:A → C:G substitutions and small indels within repetitive regions. Further analysis of mutation spectra uncovered elevated frequencies of microhomology-mediated deletions and large deletions in PFOA-treated worms, indicating its potential activity in eliciting DNA double-strand breaks. This study provides the first comparative analysis of the genome-wide mutational profile of PFAS compounds, underscoring the importance of assessing germ-cell mutagenic actions of long-chain PFAS.
Collapse
Affiliation(s)
- Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China
| | - Linglong Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - Jiali Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Anhui, No. 81, Mei-Shan Road, Hefei 230032, P. R. China
| | - Xialian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| |
Collapse
|
3
|
Maruki T, Ozere A, Freeman J, Cristescu ME. What can we infer about mutation calling by using time-series mutation accumulation data and a Bayesian Mutation Finder? Ecol Evol 2024; 14:e70339. [PMID: 39524312 PMCID: PMC11550904 DOI: 10.1002/ece3.70339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/16/2024] Open
Abstract
Accurate estimates of mutation rates derived from genome-wide mutation accumulation (MA) data are fundamental to understanding basic evolutionary processes. The rapidly improving high-throughput sequencing technologies provide unprecedented opportunities to identify single nucleotide mutations across genomes. However, such MA derived data are often difficult to analyze and the performance of the available methods of analysis is not well understood. In this study, we used the existing Bayesian Genotype Caller adapted for MA data that we refer to as Bayesian Mutation Finder (BMF) for identifying single nucleotide mutations while considering the characteristics of the data. We compared the performance of BMF with the widely used Genome Analysis Toolkit (GATK) by applying these two methods to time-series MA data as well as simulated data. The time-series data were obtained by propagating Daphnia pulex over an average of 188 generations and performing whole-genome sequencing of 14 MA lines across three time points. The results indicate that BMF enables more accurate identification of single nucleotide mutations than GATK especially when applied to the empirical data. Furthermore, BMF involves the use of fewer parameters and is more computationally efficient than GATK. Both BMF and GATK found surprisingly many candidate mutations that were not confirmed at later time points. We systematically infer causes of the unconfirmed candidate mutations, introduce a framework for estimating mutation rates based on genome-wide candidate mutations confirmed by subsequent sequencing, and provide an improved mutation rate estimate for D. pulex.
Collapse
Affiliation(s)
| | - April Ozere
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jack Freeman
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
4
|
Ajay A, Begum T, Arya A, Kumar K, Ahmad S. Global and local genomic features together modulate the spontaneous single nucleotide mutation rate. Comput Biol Chem 2024; 112:108107. [PMID: 38875896 DOI: 10.1016/j.compbiolchem.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Spontaneous mutations are evolutionary engines as they generate variants for the evolutionary downstream processes that give rise to speciation and adaptation. Single nucleotide mutations (SNM) are the most abundant type of mutations among them. Here, we perform a meta-analysis to quantify the influence of selected global genomic parameters (genome size, genomic GC content, genomic repeat fraction, number of coding genes, gene count, and strand bias in prokaryotes) and local genomic features (local GC content, repeat content, CpG content and the number of SNM at CpG islands) on spontaneous SNM rates across the tree of life (prokaryotes, unicellular eukaryotes, multicellular eukaryotes) using wild-type sequence data in two different taxon classification systems. We find that the spontaneous SNM rates in our data are correlated with many genomic features in prokaryotes and unicellular eukaryotes irrespective of their sample sizes. On the other hand, only the number of coding genes was correlated with the spontaneous SNM rates in multicellular eukaryotes primarily contributed by vertebrates data. Considering local features, we notice that local GC content and CpG content significantly were correlated with the spontaneous SNM rates in the unicellular eukaryotes, while local repeat fraction is an important feature in prokaryotes and certain specific uni- and multi-cellular eukaryotes. Such predictive features of the spontaneous SNM rates often support non-linear models as the best fit compared to the linear model. We also observe that the strand asymmetry in prokaryotes plays an important role in determining the spontaneous SNM rates but the SNM spectrum does not.
Collapse
Affiliation(s)
- Akash Ajay
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
7
|
Villegas LI, Ferretti L, Wiehe T, Waldvogel A, Schiffer PH. Parthenogenomics: Insights on mutation rates and nucleotide diversity in parthenogenetic Panagrolaimus nematodes. Ecol Evol 2024; 14:e10831. [PMID: 38192904 PMCID: PMC10771965 DOI: 10.1002/ece3.10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Asexual reproduction is assumed to lead to the accumulation of deleterious mutations, and reduced heterozygosity due to the absence of recombination. Panagrolaimid nematode species display different modes of reproduction. Sexual reproduction with distinct males and females, asexual reproduction through parthenogenesis in the genus Panagrolaimus, and hermaphroditism in Propanagrolaimus. Here, we compared genomic features of free-living nematodes in populations and species isolated from geographically distant regions to study diversity, and genome-wide differentiation under different modes of reproduction. We firstly estimated genome-wide spontaneous mutation rates in a triploid parthenogenetic Panagrolaimus, and a diploid hermaphroditic Propanagrolaimus via long-term mutation accumulation lines. Secondly, we calculated population genetic parameters including nucleotide diversity, and fixation index (F ST) between populations of asexually and sexually reproducing nematodes. Thirdly, we used phylogenetic network methods on sexually and asexually reproducing Panagrolaimus populations to understand evolutionary relationships between them. The estimated mutation rate was slightly lower for the asexual population, as expected for taxa with this reproductive mode. Natural polyploid asexual populations revealed higher nucleotide diversity. Despite their common ancestor, a gene network revealed a high level of genetic differentiation among asexual populations. The elevated heterozygosity found in the triploid parthenogens could be explained by the third genome copy. Given their tendentially lower mutation rates it can be hypothesized that this is part of the mechanism to evade Muller's ratchet. Our findings in parthenogenetic triploid nematode populations seem to challenge common expectations of evolution under asexuality.
Collapse
Affiliation(s)
| | | | - Thomas Wiehe
- Institute for GeneticsUniversity of CologneKölnGermany
| | | | | |
Collapse
|
8
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
9
|
Hwang HY, Wang J. Effect of recombination on genetic diversity of Caenorhabditis elegans. Sci Rep 2023; 13:16425. [PMID: 37777524 PMCID: PMC10542817 DOI: 10.1038/s41598-023-42600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
Greater molecular divergence and genetic diversity are present in regions of high recombination in many species. Studies describing the correlation between variant abundance and recombination rate have long focused on recombination in the context of linked selection models, whereby interference between linked sites under positive or negative selection reduces genetic diversity in regions of low recombination. Here, we show that indels, especially those of intermediate sizes, are enriched relative to single nucleotide polymorphisms in regions of high recombination in C. elegans. To explain this phenomenon, we reintroduce an alternative model that emphasizes the mutagenic effect of recombination. To extend the analysis, we examine the variants with a phylogenetic context and discuss how different models could be examined together. The number of variants generated by recombination in natural populations could be substantial including possibly the majority of some indel subtypes. Our work highlights the potential importance of a mutagenic effect of recombination, which could have a significant role in the shaping of natural genetic diversity.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
De Vivo M, Chen WY, Huang JP. Testing the efficacy of different molecular tools for parasite conservation genetics: a case study using horsehair worms (Phylum: Nematomorpha). Parasitology 2023; 150:842-851. [PMID: 37415562 PMCID: PMC10478060 DOI: 10.1017/s0031182023000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
In recent years, parasite conservation has become a globally significant issue. Because of this, there is a need for standardized methods for inferring population status and possible cryptic diversity. However, given the lack of molecular data for some groups, it is challenging to establish procedures for genetic diversity estimation. Therefore, universal tools, such as double-digest restriction-site-associated DNA sequencing (ddRADseq), could be useful when conducting conservation genetic studies on rarely studied parasites. Here, we generated a ddRADseq dataset that includes all 3 described Taiwanese horsehair worms (Phylum: Nematomorpha), possibly one of the most understudied animal groups. Additionally, we produced data for a fragment of the cytochrome c oxidase subunit I (COXI) for the said species. We used the COXI dataset in combination with previously published sequences of the same locus for inferring the effective population size (Ne) trends and possible population genetic structure.We found that a larger and geographically broader sample size combined with more sequenced loci resulted in a better estimation of changes in Ne. We were able to detect demographic changes associated with Pleistocene events in all the species. Furthermore, the ddRADseq dataset for Chordodes formosanus did not reveal a genetic structure based on geography, implying a great dispersal ability, possibly due to its hosts. We showed that different molecular tools can be used to reveal genetic structure and demographic history at different historical times and geographical scales, which can help with conservation genetic studies in rarely studied parasites.
Collapse
Affiliation(s)
- Mattia De Vivo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Yun Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
13
|
Plavskin Y, de Biase MS, Schwarz RF, Siegal ML. The rate of spontaneous mutations in yeast deficient for MutSβ function. G3 (BETHESDA, MD.) 2023; 13:6931805. [PMID: 36529906 PMCID: PMC9997558 DOI: 10.1093/g3journal/jkac330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Mutations in simple sequence repeat loci underlie many inherited disorders in humans, and are increasingly recognized as important determinants of natural phenotypic variation. In eukaryotes, mutations in these sequences are primarily repaired by the MutSβ mismatch repair complex. To better understand the role of this complex in mismatch repair and the determinants of simple sequence repeat mutation predisposition, we performed mutation accumulation in yeast strains with abrogated MutSβ function. We demonstrate that mutations in simple sequence repeat loci in the absence of mismatch repair are primarily deletions. We also show that mutations accumulate at drastically different rates in short (<8 bp) and longer repeat loci. These data lend support to a model in which the mismatch repair complex is responsible for repair primarily in longer simple sequence repeats.
Collapse
Affiliation(s)
- Yevgeniy Plavskin
- Center for Genomics and Systems Biology, New York University, New York 10003, USA.,Department of Biology, New York University, New York 10003, USA
| | - Maria Stella de Biase
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany.,Department of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany.,Institute for Computational Cancer Biology, Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany.,Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin 10623, Germany
| | - Mark L Siegal
- Center for Genomics and Systems Biology, New York University, New York 10003, USA.,Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
14
|
Mutation Rate and Spectrum of the Silkworm in Normal and Temperature Stress Conditions. Genes (Basel) 2023; 14:genes14030649. [PMID: 36980921 PMCID: PMC10048334 DOI: 10.3390/genes14030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents–progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10−8 (95% confidence interval, 0.33 × 10−8–0.49 × 10−8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.
Collapse
|
15
|
Wilson R, Le Bourgeois M, Perez M, Sarkies P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet 2023; 19:e1010647. [PMID: 36862744 PMCID: PMC10013927 DOI: 10.1371/journal.pgen.1010647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Some epigenetic information can be transmitted between generations without changes in the underlying DNA sequence. Changes in epigenetic regulators, termed epimutations, can occur spontaneously and be propagated in populations in a manner reminiscent of DNA mutations. Small RNA-based epimutations occur in C. elegans and persist for around 3-5 generations on average. Here, we explored whether chromatin states also undergo spontaneous change and whether this could be a potential alternative mechanism for transgenerational inheritance of gene expression changes. We compared the chromatin and gene expression profiles at matched time points from three independent lineages of C. elegans propagated at minimal population size. Spontaneous changes in chromatin occurred in around 1% of regulatory regions each generation. Some were heritable epimutations and were significantly enriched for heritable changes in expression of nearby protein-coding genes. Most chromatin-based epimutations were short-lived but a subset had longer duration. Genes subject to long-lived epimutations were enriched for multiple components of xenobiotic response pathways. This points to a possible role for epimutations in adaptation to environmental stressors.
Collapse
Affiliation(s)
- Rachel Wilson
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcos Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Miranda JA, Alund AW, Yan J, McKinzie PB, Dobrovolsky VN, Revollo JR. Genome-wide detection of ultralow-frequency substitution mutations in cultures of mouse lymphoma L5178Y cells and Caenorhabditis elegans worms by PacBio sequencing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:68-75. [PMID: 35224786 DOI: 10.1002/em.22473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Many conventional genetic toxicology assays require specialized cell cultures or animals and can only detect mutations that inactivate the function of a reporter gene. These limitations make such assays incompatible with many toxicological models but could be overcome by the development of techniques capable of directly detecting genome-wide somatic mutations through DNA sequencing. PacBio sequencing can generate almost error-free consensus reads by repeatedly inspecting both DNA strands from circularized molecules (a method known as PacBio HiFi). In this study, we show that PacBio HiFi can detect genome-wide ultralow-frequency substitution mutations in cultures of mouse lymphoma L5178Y cells and Caenorhabditis elegans worms. The mutation frequencies (MFs) of unexposed samples in both models were ~1 × 10-7 mutations per base pair. Compared to these controls, PacBio HiFi detected MF increases of 23-fold in cultures of L5178Y cells exposed to 5 mM ethyl methanosulfonate (EMS) for 4 h, and 5-, 12-, and 29-fold in cultures of C. elegans worms exposed to 12.5, 25, and 50 mM EMS for 4 h, respectively. In both models, the mutation spectra of controls were diverse, while those derived from EMS-exposed samples were dominated by C:G → T:A transitions. To validate these results, clone sequencing analyses were performed on the same cultures of L5178Y cells. The results obtained by clone sequencing and PacBio HiFi were almost identical. Our results suggest that PacBio sequencing could be used for the detection, quantitation, and characterization of mutations in any DNA-containing sample, including those that are not compatible with conventional mutation detection approaches.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Alexander W Alund
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
17
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
18
|
Ho EKH, Schaack S. Intraspecific Variation in the Rates of Mutations Causing Structural Variation in Daphnia magna. Genome Biol Evol 2021; 13:6444992. [PMID: 34849778 PMCID: PMC8691059 DOI: 10.1093/gbe/evab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations that cause structural variation are important sources of genetic variation upon which other evolutionary forces can act, however, they are difficult to observe and therefore few direct estimates of their rate and spectrum are available. Understanding mutation rate evolution, however, requires adding to the limited number of species for which direct estimates are available, quantifying levels of intraspecific variation in mutation rates, and assessing whether rate estimates co-vary across types of mutation. Here, we report structural variation-causing mutation rates (svcMRs) for six categories of mutations (short insertions and deletions, long deletions and duplications, and deletions and duplications at copy number variable sites) from nine genotypes of Daphnia magna collected from three populations in Finland, Germany, and Israel using a mutation accumulation approach. Based on whole-genome sequence data and validated using simulations, we find svcMRs are high (two orders of magnitude higher than base substitution mutation rates measured in the same lineages), highly variable among populations, and uncorrelated across categories of mutation. Furthermore, to assess the impact of scvMRs on the genome, we calculated rates while adjusting for the lengths of events and ran simulations to determine if the mutations occur in genic regions more or less frequently than expected by chance. Our results pose a challenge to most prevailing theories aimed at explaining the evolution of the mutation rate, underscoring the importance of obtaining additional mutation rate estimates in more genotypes, for more types of mutation, in more species, in order to improve our future understanding of mutation rates, their variation, and their evolution.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
19
|
Rajaei M, Saxena AS, Johnson LM, Snyder MC, Crombie TA, Tanny RE, Andersen EC, Joyner-Matos J, Baer CF. Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans. Genome Res 2021; 31:1602-1613. [PMID: 34404692 PMCID: PMC8415377 DOI: 10.1101/gr.275372.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion–deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.
Collapse
Affiliation(s)
- Moein Rajaei
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | - Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Michael C Snyder
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Timothy A Crombie
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Joanna Joyner-Matos
- Department of Biology, Eastern Washington University, Cheney, Washington 99004, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,University of Florida Genetics Institute, Gainesville, Florida 32608, USA
| |
Collapse
|
20
|
Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair. Cells 2021; 10:cells10051224. [PMID: 34067668 PMCID: PMC8156620 DOI: 10.3390/cells10051224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
We describe the contribution of DNA mismatch repair (MMR) to the stability of the eukaryotic nuclear genome as determined by whole-genome sequencing. To date, wild-type nuclear genome mutation rates are known for over 40 eukaryotic species, while measurements in mismatch repair-defective organisms are fewer in number and are concentrated on Saccharomyces cerevisiae and human tumors. Well-studied organisms include Drosophila melanogaster and Mus musculus, while less genetically tractable species include great apes and long-lived trees. A variety of techniques have been developed to gather mutation rates, either per generation or per cell division. Generational rates are described through whole-organism mutation accumulation experiments and through offspring–parent sequencing, or they have been identified by descent. Rates per somatic cell division have been estimated from cell line mutation accumulation experiments, from systemic variant allele frequencies, and from widely spaced samples with known cell divisions per unit of tissue growth. The latter methods are also used to estimate generational mutation rates for large organisms that lack dedicated germlines, such as trees and hyphal fungi. Mechanistic studies involving genetic manipulation of MMR genes prior to mutation rate determination are thus far confined to yeast, Arabidopsis thaliana, Caenorhabditis elegans, and one chicken cell line. A great deal of work in wild-type organisms has begun to establish a sound baseline, but far more work is needed to uncover the variety of MMR across eukaryotes. Nonetheless, the few MMR studies reported to date indicate that MMR contributes 100-fold or more to genome stability, and they have uncovered insights that would have been impossible to obtain using reporter gene assays.
Collapse
|
21
|
Froehlich JJ, Uyar B, Herzog M, Theil K, Glažar P, Akalin A, Rajewsky N. Parallel genetics of regulatory sequences using scalable genome editing in vivo. Cell Rep 2021; 35:108988. [PMID: 33852857 DOI: 10.1016/j.celrep.2021.108988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.
Collapse
Affiliation(s)
- Jonathan J Froehlich
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Bora Uyar
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Margareta Herzog
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Petar Glažar
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.
| |
Collapse
|
22
|
Mao JM, Wang Y, Yang L, Yao Q, Chen KP. An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence. Evol Bioinform Online 2021; 17:1176934320988558. [PMID: 33551639 PMCID: PMC7841239 DOI: 10.1177/1176934320988558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
Introns are highly variable in number and size. Sequence simulation is an
effective method to elucidate intron evolution patterns. Previously, we have
reported that introns are more likely to evolve through mutation-and-deletion
(MD) rather than through mutation-and-insertion (MI). In the present study, we
further studied evolution models by allowing insertion in the MD model and by
allowing deletion in the MI model at various frequencies. It was found that all
deletion-biased models with proper parameter settings could generate sequences
with attributes matchable to 16 invertebrate introns from the microphthalmia
transcription factor gene, whereas all insertion-biased models with any
parameter settings failed to generate such sequences. We conclude that the
examined invertebrate introns may have evolved from a longer ancestral sequence
in a deletion-biased pattern. The constructed models are useful for studying the
evolution of introns from other genes and/or from other taxonomic groups. (C++
scripts of all deletion- and insertion-biased models are available upon
request.)
Collapse
Affiliation(s)
- Jun-Ming Mao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liu Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
24
|
Beltran T, Shahrezaei V, Katju V, Sarkies P. Epimutations driven by small RNAs arise frequently but most have limited duration in Caenorhabditis elegans. Nat Ecol Evol 2020; 4:1539-1548. [PMID: 32868918 DOI: 10.1038/s41559-020-01293-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/21/2020] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation involves changes in gene expression independent of DNA sequence variation that are inherited through cell division. In addition to a fundamental role in cell differentiation, some epigenetic changes can also be transmitted transgenerationally through meiosis. Epigenetic alterations (epimutations) could thus contribute to heritable variation within populations and be subject to evolutionary processes such as natural selection and drift. However, the rate at which epimutations arise and their typical persistence are unknown, making it difficult to evaluate their potential for evolutionary adaptation. Here, we perform a genome-wide study of epimutations in a metazoan organism. We use experimental evolution to characterize the rate, spectrum and stability of epimutations driven by small silencing RNAs in the model nematode Caenorhabditis elegans. We show that epimutations arise spontaneously at a rate approximately 25 times greater than DNA sequence changes and typically have short half-lives of two to three generations. Nevertheless, some epimutations last at least ten generations. Epimutations mediated by small RNAs may thus contribute to evolutionary processes over a short timescale but are unlikely to bring about long-term divergence in the absence of selection.
Collapse
Affiliation(s)
- Toni Beltran
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Imperial College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, London, UK. .,Institute of Clinical Sciences, Imperial College London, London, UK.
| |
Collapse
|
25
|
Meier B, Volkova NV, Gerstung M, Gartner A. Analysis of mutational signatures in C. elegans: Implications for cancer genome analysis. DNA Repair (Amst) 2020; 95:102957. [PMID: 32980770 DOI: 10.1016/j.dnarep.2020.102957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Genome integrity is constantly challenged by exogenous and endogenous insults, and mutations are associated with inherited disease and cancer. Here we summarize recent studies that utilized C. elegans whole genome next generation sequencing to experimentally determine mutational signatures associated with mutagen exposure, DNA repair deficiency or a combination of both and discuss the implications of these results for the understanding of cancer genome evolution. The experimental analysis of wild-type and DNA repair deficient nematodes propagated under unchallenged conditions over many generations revealed increased mutagenesis in approximately half of all DNA repair deficient strains, its rate, except for DNA mismatch repair, only being moderately increased. The exposure of wild-type and DNA repair defective strains to selected genotoxins, including UV-B and ionizing radiation, alkylating compounds, aristolochic acid, aflatoxin-B1, and cisplatin enabled the systematic analysis of the relative contributions of redundant repair modalities that mend DNA damage. Combining genotoxin exposure with DNA repair deficiency can manifest as altered mutation rates and/or as a change in mutational profiles, and reveals how different DNA alterations induced by one genotoxin are repaired by separate DNA repair pathways, often in a highly redundant way. Cancer genomes provide a snapshot of all mutational events that happened prior to cancer detection and sequencing, necessitating computational models to deduce mutational signatures using mathematical best fit approaches. While computationally deducing signatures from cancer genomes has been tremendously successful in associating some signatures to known mutagenic causes, many inferred signatures lack a clear link to a known mutagenic process. Moreover, analytical signatures might not reflect any distinct mutagenic processes. Nonetheless, combined effects of mutagen exposure and DNA damage-repair deficiency are also present in cancer genomes, but cannot be as easily detected owing to the unknown histories of genotoxic exposures and because biallelic in contrast to monoallelic DNA repair deficiency is rare. The impact of damage-repair interactions also manifests through selective pressure for DNA repair gene inactivation during cancer evolution. Using these considerations, we discuss a theoretical framework that explains why minute mutagenic changes, possibly too small to manifest as change in a signature, can have major effects in oncogenesis. Overall, the experimental analysis of mutational processes underscores that the interpretation of mutational signatures requires considering both the primary DNA lesion and repair status and imply that mutational signatures derived from cancer genomes may be more variable than currently anticipated.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Scotland, UK
| | - Nadezda V Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anton Gartner
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
26
|
Besnard F, Picao-Osorio J, Dubois C, Félix MA. A broad mutational target explains a fast rate of phenotypic evolution. eLife 2020; 9:54928. [PMID: 32851977 PMCID: PMC7556874 DOI: 10.7554/elife.54928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The rapid evolution of a trait in a clade of organisms can be explained by the sustained action of natural selection or by a high mutational variance, that is the propensity to change under spontaneous mutation. The causes for a high mutational variance are still elusive. In some cases, fast evolution depends on the high mutation rate of one or few loci with short tandem repeats. Here, we report on the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of P3.p. We identify and validate causal mutations underlying P3.p's high mutational variance. We find that these positions do not present any characteristics of a high mutation rate, are scattered across the genome and the corresponding genes belong to distinct biological pathways. Our data indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding fast phenotypic evolutionary rate. Heritable characteristics or traits of a group of organisms, for example the large brain size of primates or the hooves of a horse, are determined by genes, the environment, and by the interactions between them. Traits can change over time and generations when enough mutations in these genes have spread in a species to result in visible differences. However, some traits, such as the large brain of primates, evolve faster than others, but why this is the case has been unclear. It could be that a few specific genes important for that trait in question mutate at a high rate, or, that many genes affect the trait, creating a lot of variation for natural selection to choose from. Here, Besnard, Picao-Osorio et al. studied the roundworm Caenorhabditis elegans to better understand the causes underlying the different rates of trait evolution. These worms have a short life cycle and evolve quickly over many generations, making them an ideal candidate for studying mutation rates in different traits. Previous studies have shown that one of C. elegans’ six cells of the reproductive system evolves faster than the others. To investigate this further, Besnard, Picao-Osorio et al. analysed the genetic mutations driving change in this cell in 250 worm generations. The results showed that five mutations in five different genes – all responsible for different processes in the cells – were behind the supercharged evolution of this particular cell. This suggests that fast evolution results from natural selection acting upon a collection of genes, rather than one gene, and that many genes and pathways shape this trait. In conclusion, these results demonstrate that how traits are coded at the molecular level, in one gene or many, can influence the rate at which they evolve.
Collapse
Affiliation(s)
- Fabrice Besnard
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France.,Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Joao Picao-Osorio
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Clément Dubois
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|