Nearly unbiased estimator of contemporary effective mother size using within-cohort maternal sibling pairs incorporating parental and nonparental reproductive variations.
Heredity (Edinb) 2019;
124:299-312. [PMID:
31578462 PMCID:
PMC6972959 DOI:
10.1038/s41437-019-0271-6]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, we developed a nearly unbiased estimator of contemporary effective mother size in a population, which is based on a known maternal half-sibling relationship found within the same cohort. Our method allows for variance of the average number of offspring per mother (i.e., parental variation, such as age-specific fecundity) and variance of the number of offspring among mothers with identical reproductive potential (i.e., nonparental variation, such as family-correlated survivorship). We also developed estimators of the variance and coefficient of variation of contemporary effective mother size and qualitatively evaluated the performance of the estimators by running an individual-based model. Our results provide guidance for (i) a sample size to ensure the required accuracy and precision when the order of effective mother size is available and (ii) a degree of uncertainty regarding the estimated effective mother size when information about the size is unavailable. To the best of our knowledge, this is the first report to demonstrate the derivation of a nearly unbiased estimator of effective population size; however, its current application is limited to effective mother size and situations, in which the sample size is not particularly small and maternal half-sibling relationships can be detected without error. The results of this study demonstrate the usefulness of a sibship assignment method for estimating effective population size; in addition, they have the potential to greatly widen the scope of genetic monitoring, especially in the situation of small sample size.
Collapse