1
|
Shaikh U, Sherlock K, Wilson J, Gilliland W, Lewellyn L. Lineage-based scaling of germline intercellular bridges during oogenesis. Development 2024; 151:dev202676. [PMID: 39190553 PMCID: PMC11385318 DOI: 10.1242/dev.202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
The size of subcellular structures must be tightly controlled to maintain normal cell function. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during development, when cells are growing, dividing and rearranging. The developing Drosophila egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of 16 germline cells, which are connected through intercellular bridges called ring canals. As the egg chamber grows, the germline cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to lineage; the largest, 'first-born' ring canals increase in size at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or in egg chambers with twice as many germline cells. Analysis of lines that produce larger or smaller mature eggs reveals that different strategies could be used to alter final egg size.
Collapse
Affiliation(s)
- Umayr Shaikh
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Kathleen Sherlock
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Julia Wilson
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - William Gilliland
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
2
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Samuels TJ, Gui J, Gebert D, Karam Teixeira F. Two distinct waves of transcriptome and translatome changes drive Drosophila germline stem cell differentiation. EMBO J 2024; 43:1591-1617. [PMID: 38480936 PMCID: PMC11021484 DOI: 10.1038/s44318-024-00070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
The tight control of fate transitions during stem cell differentiation is essential for proper tissue development and maintenance. However, the challenges in studying sparsely distributed adult stem cells in a systematic manner have hindered efforts to identify how the multilayered regulation of gene expression programs orchestrates stem cell differentiation in vivo. Here, we synchronised Drosophila female germline stem cell (GSC) differentiation in vivo to perform in-depth transcriptome and translatome analyses at high temporal resolution. This characterisation revealed widespread and dynamic changes in mRNA level, promoter usage, exon inclusion, and translation efficiency. Transient expression of the master regulator, Bam, drives a first wave of expression changes, primarily modifying the cell cycle program. Surprisingly, as Bam levels recede, differentiating cells return to a remarkably stem cell-like transcription and translation program, with a few crucial changes feeding into a second phase driving terminal differentiation to form the oocyte. Altogether, these findings reveal that rather than a unidirectional accumulation of changes, the in vivo differentiation of stem cells relies on distinctly regulated and developmentally sequential waves.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Jinghua Gui
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK.
| |
Collapse
|
4
|
Anderson MAE, Gonzalez E, Edgington MP, Ang JXD, Purusothaman DK, Shackleford L, Nevard K, Verkuijl SAN, Harvey-Samuel T, Leftwich PT, Esvelt K, Alphey L. A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations. Nat Commun 2024; 15:729. [PMID: 38272895 PMCID: PMC10810878 DOI: 10.1038/s41467-024-44956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.
Collapse
Affiliation(s)
- Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Matthew P Edgington
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Katherine Nevard
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
| | - Sebald A N Verkuijl
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | | | - Philip T Leftwich
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565883. [PMID: 37986763 PMCID: PMC10659369 DOI: 10.1101/2023.11.06.565883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. While mechanisms have been established for individual cells' dynamic behaviors, mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a RhoGEF and RhoGAP pair whose relocalization from nucleus to cortex results in actomyosin waves in egg chambers. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly and RhoGAP recruitment by ~4 seconds. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | | | | | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
- Lead contact
| |
Collapse
|
6
|
Doherty CA, Amargant F, Shvartsman SY, Duncan FE, Gavis ER. Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila. Trends Cell Biol 2021; 32:311-323. [PMID: 34922803 DOI: 10.1016/j.tcb.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
In most animals, the oocyte is the largest cell by volume. The oocyte undergoes a period of large-scale growth during its development, prior to fertilization. At first glance, tissues that support the development of the oocyte in different organisms have diverse cellular characteristics that would seem to prohibit functional comparisons. However, these tissues often act with a common goal of establishing dynamic forms of two-way communication with the oocyte. We propose that this bidirectional communication between oocytes and support cells is a universal phenomenon that can be directly compared across species. Specifically, we highlight fruit fly and mouse oogenesis to demonstrate that similarities and differences in these systems should be used to inform and design future experiments in both models.
Collapse
Affiliation(s)
- Caroline A Doherty
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
7
|
Pokrywka NJ, Bush S, Nick SE. The R-SNARE Ykt6 is required for multiple events during oogenesis in Drosophila. Cells Dev 2021; 169:203759. [PMID: 34856414 DOI: 10.1016/j.cdev.2021.203759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022]
Abstract
Ykt6 has emerged as a key protein involved in a wide array of trafficking events, and has also been implicated in a number of human pathologies, including the progression of several cancers. It is a complex protein that simultaneously exhibits a high degree of structural and functional homology, and yet adopts differing roles in different cellular contexts. Because Ykt6 has been implicated in a variety of vesicle fusion events, we characterized the role of Ykt6 in oogenesis by observing the phenotype of Ykt6 germline clones. Immunofluorescence was used to visualize the expression of membrane proteins, organelles, and vesicular trafficking markers in mutant egg chambers. We find that Ykt6 germline clones have morphological and actin defects affecting both the nurse cells and oocyte, consistent with a role in regulating membrane growth during mid-oogenesis. Additionally, these egg chambers exhibit defects in bicoid and oskar RNA localization, and in the trafficking of Gurken during mid-to-late oogenesis. Finally, we show that Ykt6 mutations result in defects in late endosomal pathways, including endo- and exocytosis. These findings suggest a role for Ykt6 in endosome maturation and in the movement of membranes to and from the cell surface.
Collapse
Affiliation(s)
- Nancy Jo Pokrywka
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States of America.
| | - Setse Bush
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States of America
| | - Sophie E Nick
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States of America
| |
Collapse
|
8
|
Bernard F, Jouette J, Durieu C, Le Borgne R, Guichet A, Claret S. GFP-Tagged Protein Detection by Electron Microscopy Using a GBP-APEX Tool in Drosophila. Front Cell Dev Biol 2021; 9:719582. [PMID: 34476234 PMCID: PMC8406855 DOI: 10.3389/fcell.2021.719582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In cell biology, detection of protein subcellular localizations is often achieved by optical microscopy techniques and more rarely by electron microscopy (EM) despite the greater resolution offered by EM. One of the possible reasons was that protein detection by EM required specific antibodies whereas this need could be circumvented by using fluorescently-tagged proteins in optical microscopy approaches. Recently, the description of a genetically encodable EM tag, the engineered ascorbate peroxidase (APEX), whose activity can be monitored by electron-dense DAB precipitates, has widened the possibilities of specific protein detection in EM. However, this technique still requires the generation of new molecular constructions. Thus, we decided to develop a versatile method that would take advantage of the numerous GFP-tagged proteins already existing and create a tool combining a nanobody anti-GFP (GBP) with APEX. This GBP-APEX tool allows a simple and efficient detection of any GFP fusion proteins without the needs of specific antibodies nor the generation of additional constructions. We have shown the feasibility and efficiency of this method to detect various proteins in Drosophila ovarian follicles such as nuclear proteins, proteins associated with endocytic vesicles, plasma membranes or nuclear envelopes. Lastly, we expressed this tool in Drosophila with the UAS/GAL4 system that enables spatiotemporal control of the protein detection.
Collapse
Affiliation(s)
- Fred Bernard
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Julie Jouette
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Catherine Durieu
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Rémi Le Borgne
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Antoine Guichet
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Sandra Claret
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| |
Collapse
|
9
|
Stark K, Crowe O, Lewellyn L. Precise levels of the Drosophila adaptor protein Dreadlocks maintain the size and stability of germline ring canals. J Cell Sci 2021; 134:238107. [PMID: 33912915 PMCID: PMC8106954 DOI: 10.1242/jcs.254730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper. Summary:Drosophila Dock likely functions downstream of WASp and the Arp2/3 complex to regulate the size and stability of the germline ring canals in the developing egg chamber.
Collapse
Affiliation(s)
- Kara Stark
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Olivia Crowe
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|