1
|
Yeager R, Heasley LR, Baker N, Shrivastava V, Woodman J, McMurray MA. Wild yeast isolation by middle-school students reveals features of populations residing on North American oaks. G3 (BETHESDA, MD.) 2025; 15:jkae270. [PMID: 39570886 PMCID: PMC11708222 DOI: 10.1093/g3journal/jkae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle-school students in Denver, CO, USA, to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. In contrast, we isolated the "dairy yeast," Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state. The outreach activity partnered middle-school, high-school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, CO 80226, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Yeager R, Heasley L, Baker N, Shrivastava V, Woodman J, McMurray M. Wild yeast isolation by middle school students reveals features of North American oak populations of Saccharomyces cerevisiae and Kluyveromyces lactis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601111. [PMID: 39005424 PMCID: PMC11244913 DOI: 10.1101/2024.06.27.601111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle school students in Denver, Colorado, USA to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. By contrast, we isolated the "dairy yeast", Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state, pointing to high genetic diversity. The outreach activity partnered middle school, high school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lydia Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, Colorado, USA
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Maroc L, Fairhead C. Lessons from the Nakaseomyces: mating-type switching, DSB repair and evolution of Ho. Curr Genet 2021; 67:685-693. [PMID: 33830322 DOI: 10.1007/s00294-021-01182-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
This short paper aims to review what our recent studies in the Nakaseomyces yeasts, principally Candida glabrata, reveal about the evolution of the mating-type switching system and its components, as well as about the repair of chromosomal double-strand breaks in this clade. In the model yeast Saccharomyces cerevisiae, the study of mating-type switching has, over the years, led to major discoveries in how cells process chromosomal breaks. Indeed, in this species, switching, which allows every haploid cell to produce cells of opposite mating types that can mate together, is initiated by the Ho endonuclease, linking sexual reproduction to a programmed chromosomal cut. More recently, the availability of other yeasts' genomes from type strains and from populations, and the ability to manipulate and edit the genomes of most yeasts in the laboratory, has enabled scientists to explore mating-type switching in new species, thus enriching our evolutionary perspective on this phenomenon. In this review, we will show how the study of mating-type switching in C. glabrata and Nakaseomyces delphensis has allowed us to reveal possible additional roles for Ho, and also to discover major differences in DSB repair at central and subtelomeric sexual loci. In addition, we report how the study of repair of chromosomal breaks induced by CRISPR-Cas9 reveals that efficient and faithful NHEJ is a major repair pathway in C. glabrata.
Collapse
Affiliation(s)
- Laetitia Maroc
- GQE-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Cécile Fairhead
- GQE-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Coughlan AY, Lombardi L, Braun-Galleani S, Martos AA, Galeote V, Bigey F, Dequin S, Byrne KP, Wolfe KH. The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family. eLife 2020; 9:55336. [PMID: 32338594 PMCID: PMC7282813 DOI: 10.7554/elife.55336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023] Open
Abstract
The mating-type switching endonuclease HO plays a central role in the natural life cycle of Saccharomyces cerevisiae, but its evolutionary origin is unknown. HO is a recent addition to yeast genomes, present in only a few genera close to Saccharomyces. Here we show that HO is structurally and phylogenetically related to a family of unorthodox homing genetic elements found in Torulaspora and Lachancea yeasts. These WHO elements home into the aldolase gene FBA1, replacing its 3' end each time they integrate. They resemble inteins but they operate by a different mechanism that does not require protein splicing. We show that a WHO protein cleaves Torulaspora delbrueckii FBA1 efficiently and in an allele-specific manner, leading to DNA repair by gene conversion or NHEJ. The DNA rearrangement steps during WHO element homing are very similar to those during mating-type switching, and indicate that HO is a domesticated WHO-like element. In the same way as a sperm from a male and an egg from a female join together to form an embryo in most animals, yeast cells have two sexes that coordinate how they reproduce. These are called “mating types” and, rather than male or female, an individual yeast cell can either be mating type “a” or “alpha”. Every yeast cell contains the genes for both mating types, and each cell’s mating type is determined by which of those genes it has active. Only one mating type gene can be ‘on’ at a time, but some yeast species can swap mating type on demand by switching the corresponding genes ‘on’ or ‘off’. This switch is unusual. Rather than simply activate one of the genes it already has, the yeast cell keeps an inactive version of each mating type gene tucked away, makes a copy of the gene it wants to be active and pastes that copy into a different location in its genome. To do all of this yeast need another gene called HO. This gene codes for an enzyme that cuts the DNA at the location of the active mating type gene. This makes an opening that allows the cell to replace the ‘a’ gene with the ‘alpha’ gene, or vice versa. This system allows yeast cells to continue mating even if all the cells in a colony start off as the same mating type. But, cutting into the DNA is risky, and can damage the health of the cell. So, why did yeast cells evolve a system that could cause them harm? To find out where the HO gene came from, Coughlan et al. searched through all the available genomes from yeast species for other genes with similar sequences and identified a cluster which they nicknamed “weird HO” genes, or WHO genes for short. Testing these genes revealed that they also code for enzymes that make cuts in the yeast genome, but the way the cell repairs the cuts is different. The WHO genes are jumping genes. When the enzyme encoded by a WHO gene makes a cut in the genome, the yeast cell copies the gene into the gap, allowing the gene to ‘jump’ from one part of the genome to another. It is possible that this was the starting point for the evolution of the HO gene. Changes to a WHO gene could have allowed it to cut into the mating type region of the yeast genome, giving the yeast an opportunity to ‘domesticate’ it. Over time, the yeast cell stopped the WHO gene from jumping into the gap and started using the cut to change its mating type. Understanding how cells adapt genes for different purposes is a key question in evolutionary biology. There are many other examples of domesticated jumping genes in other organisms, including in the human immune system. Understanding the evolution of HO not only sheds light on how yeast mating type switching evolved, but on how other species might harness and adapt their genes.
Collapse
Affiliation(s)
- Aisling Y Coughlan
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Lisa Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Alexandre Ar Martos
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Virginie Galeote
- SPO, INRAE, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Frédéric Bigey
- SPO, INRAE, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Sylvie Dequin
- SPO, INRAE, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Kevin P Byrne
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H Wolfe
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Singh B, Bisht KK, Upadhyay U, Kushwaha AC, Nanda JS, Srivastava S, Saini JK, Klar AJS, Singh J. Role of Cdc23/Mcm10 in generating the ribonucleotide imprint at the mat1 locus in fission yeast. Nucleic Acids Res 2019; 47:3422-3433. [PMID: 30759238 PMCID: PMC6468313 DOI: 10.1093/nar/gkz092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 01/28/2023] Open
Abstract
The developmental asymmetry of fission yeast daughter cells derives from inheriting ‘older Watson’ versus ‘older Crick’ DNA strand from the parental cell, strands that are complementary but not identical with each other. A novel DNA strand-specific ‘imprint’, installed during DNA replication at the mating-type locus (mat1), imparts competence for cell type inter-conversion to one of the two chromosome replicas. The catalytic subunit of DNA Polymerase α (Polα) has been implicated in the imprinting process. Based on its known biochemical function, Polα might install the mat1 imprint during lagging strand synthesis. The nature of the imprint is not clear: it is either a nick or a ribonucleotide insertion. Our investigations do not support a direct role of Polα in nicking through putative endonuclease domains but confirm its indirect role in installing an alkali-labile moiety as the imprint. While ruling out the role of the primase subunit of Polα holoenzyme, we find that mutations in the Polα-recruitment and putative primase homology domain in Mcm10/Cdc23 abrogate the ribonucleotide imprint formation. These results, while confirming the ribonucleotide nature of the imprint suggest the possibility of a direct role of Mcm10/Cdc23 in installing it in cooperation with Polα and Swi1.
Collapse
Affiliation(s)
- Balveer Singh
- Institute of Genetics and Development of Rennes, Faculte de Medecine, Campus santé de Villejean, 2 avenue du Professor Leon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Kamlesh K Bisht
- Translational Discovery Biology, (Immuno-Oncology), Bristol-Myers Squibb Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Udita Upadhyay
- Department of Anesthesiology, RMSB 8022, 1600 NW, 10th Ave., Miami, FL 33136, USA
| | | | - Jagpreet Singh Nanda
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Suchita Srivastava
- QC Division, Central Research Institute, Kasauli, Himachal Pradesh 173204, India
| | - Jai Kumar Saini
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Amar J S Klar
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Building 539, Room 154, Frederick, MD 21702-1201, USA
| | - Jagmohan Singh
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
6
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
7
|
Boisnard S, Zhou Li Y, Arnaise S, Sequeira G, Raffoux X, Enache-Angoulvant A, Bolotin-Fukuhara M, Fairhead C. Efficient Mating-Type Switching in Candida glabrata Induces Cell Death. PLoS One 2015; 10:e0140990. [PMID: 26491872 PMCID: PMC4619647 DOI: 10.1371/journal.pone.0140990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 01/05/2023] Open
Abstract
Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mating-types spontaneously, as S. cerevisiae does. We have recently sequenced the genomes of the five species that, together with C. glabrata, make up the Nakaseomyces clade. All contain MAT-like cassettes and an HO gene homolog. In this work, we express the HO gene of all Nakaseomyces and of S. cerevisiae in C. glabrata. All can induce mating-type switching, but, despite the larger phylogenetic distance, the most efficient endonuclease is the one from S. cerevisiae. Efficient mating-type switching in C. glabrata is accompanied by a high cell mortality, and sometimes results in conversion of the additional cassette HML. Mortality probably results from the cutting of the HO recognition sites that are present, in HML and possibly HMR, contrary to what happens naturally in S. cerevisiae. This has implications in the life-cycle of C. glabrata, as we show that efficient MAT switching is lethal for most cells, induces chromosomal rearrangements in survivors, and that the endogenous HO is probably rarely active indeed.
Collapse
Affiliation(s)
- Stéphanie Boisnard
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
- * E-mail:
| | - Youfang Zhou Li
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| | - Sylvie Arnaise
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
| | - Gregory Sequeira
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
| | - Xavier Raffoux
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| | - Adela Enache-Angoulvant
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Hôpital de Bicêtre, Le Kremlin Bicêtre, APHP, France
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| | - Cécile Fairhead
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| |
Collapse
|
8
|
Solieri L, Dakal TC, Giudici P, Cassanelli S. Sex-determination system in the diploid yeast Zygosaccharomyces sapae. G3 (BETHESDA, MD.) 2014; 4:1011-25. [PMID: 24939186 PMCID: PMC4065246 DOI: 10.1534/g3.114.010405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 11/18/2022]
Abstract
Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301(T), a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732(T) MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5-99.5%). ABT301(T) possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATA: -idiomorph resulted in a single ZsMTLA: locus encoding two Z. rouxii-like proteins MATA: 1 and MATA: 2. To assign the cloned ZsMTLα and ZsMTLA: idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLA: locus was 3'-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301(T) displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| |
Collapse
|
9
|
Bolotin-Fukuhara M, Fairhead C. Candida glabrata: a deadly companion? Yeast 2014; 31:279-88. [PMID: 24861573 DOI: 10.1002/yea.3019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 11/08/2022] Open
Abstract
The yeast Candida glabrata has become a major fungal opportunistic pathogen of humans since the 1980s. Contrary to what its name suggests, it is much closer, phylogenetically, to the model yeast Saccharomyces cerevisiae than to the most prevalent human fungal pathogen, Candida albicans. Its similarity to S. cerevisiae fortunately extends to their amenability to molecular genetics methods. C. glabrata is now described as part of the Nakaseomyces clade, which includes two new pathogens and other environmental species. C. glabrata is likely a commensal species of the human digestive tract, but systemic infections of immunocompromised patients are often fatal. In addition to being the subject of active medical research, other studies on C. glabrata focus on fundamental aspects of evolution of yeast genomes and adaptation. For example, the genome of C. glabrata has undergone major gene and intron loss compared to S. cerevisiae. It is also an apparently asexual species, a feature that inevitably leads to questions about the species' evolutionary past, present and future. On-going research with this yeast continues to address various aspects of adaptation to the human host and mechanisms of evolution in the Saccharomycetaceae, major model organisms for biology.
Collapse
|
10
|
Pfeifer A, Martin B, Kämper J, Basse CW. The mitochondrial LSU rRNA group II intron of Ustilago maydis encodes an active homing endonuclease likely involved in intron mobility. PLoS One 2012; 7:e49551. [PMID: 23166709 PMCID: PMC3498182 DOI: 10.1371/journal.pone.0049551] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Background The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. Methodology/Principal Findings We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg2+-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3′ overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5′-GACGGGAAGACCCT-3′) and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. Conclusions/Significance The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.
Collapse
Affiliation(s)
- Anja Pfeifer
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bettina Martin
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jörg Kämper
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christoph W. Basse
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
11
|
Katz Ezov T, Chang SL, Frenkel Z, Segrè AV, Bahalul M, Murray AW, Leu JY, Korol A, Kashi Y. Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction. Mol Ecol 2009; 19:121-31. [PMID: 20002587 DOI: 10.1111/j.1365-294x.2009.04436.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the evolution of sex and recombination, key factors in the evolution of life, is a major challenge in biology. Studies of reproduction strategies of natural populations are important to complement the theoretical and experimental models. Fungi with both sexual and asexual life cycles are an interesting system for understanding the evolution of sex. In a study of natural populations of yeast Saccharomyces cerevisiae, we found that the isolates are heterothallic, meaning their mating type is stable, while the general belief is that natural S. cerevisiae strains are homothallic (can undergo mating-type switching). Mating-type switching is a gene-conversion process initiated by a site-specific endonuclease HO; this process can be followed by mother-daughter mating. Heterothallic yeast can mate with unrelated haploids (amphimixis), or undergo mating between spores from the same tetrad (intratetrad mating, or automixis), but cannot undergo mother-daughter mating as homothallic yeasts can. Sequence analysis of HO gene in a panel of natural S. cerevisiae isolates revealed multiple mutations. Good correspondence was found in the comparison of population structure characterized using 19 microsatellite markers spread over eight chromosomes and the HO sequence. Experiments that tested whether the mating-type switching pathway upstream and downstream of HO is functional, together with the detected HO mutations, strongly suggest that loss of function of HO is the cause of heterothallism. Furthermore, our results support the hypothesis that clonal reproduction and intratetrad mating may predominate in natural yeast populations, while mother-daughter mating might not be as significant as was considered.
Collapse
Affiliation(s)
- Tal Katz Ezov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Singh P, Tripathi P, Silva GH, Pingoud A, Muniyappa K. Characterization of Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease, reveals a unique mode of DNA binding, helical distortion, and cleavage compared with a canonical LAGLIDADG homing endonuclease. J Biol Chem 2009; 284:25912-28. [PMID: 19605345 PMCID: PMC2757992 DOI: 10.1074/jbc.m109.042861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.
Collapse
Affiliation(s)
- Pawan Singh
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Pankaj Tripathi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - George H. Silva
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Alfred Pingoud
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - K. Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
13
|
Baranes-Bachar K, Baranes-Bacher K, Khalaila I, Ivantsiv Y, Lavut A, Voloshin O, Raveh D. New interacting partners of the F-box protein Ufo1 of yeast. Yeast 2008; 25:733-43. [PMID: 18949821 DOI: 10.1002/yea.1615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The yeast F-box protein Ufo1 recruits proteins for ubiquitylation by the SCF ubiquitin ligase complex preparing them for proteasomal degradation. Ufo1 has a role in maintenance of genome stability; its substrates include Ho endonuclease and Rad30 polymerase of error-prone DNA repair. Ufo1 is an unusual F-box protein, as it has three ubiquitin interacting motifs (UIMs). Deletion of the genomic UIMs is lethal; ectopic expression of UFO1 Delta UIMs extends protein half-life and arrests the cell cycle. A whole-genome study employing a TAP tag fused to the C-terminal UIMs did not identify Ufo1-interacting proteins. Here we therefore used stabilized N-terminally tagged Ufo1 Delta UIM as a strategy to identify Ufo1-interacting proteins by mass spectroscopy. We identified proteins that function in transcription, and an indirect interaction with Hsp70 molecular chaperones via the Skp1 adaptor; we also show that Ufo1 interacts with the 19S regulatory particle of the proteasome. Thus, our data augment the current network of known Ufo1 interacting proteins. We show directly that the UIMs are crucial for Ufo1 ubiquitylation in vivo, indicating that they facilitate turnover of SCF Ufo1 complexes. This allows recycling of the core subunits of the SCF complex and cell cycle progression.
Collapse
Affiliation(s)
- Keren Baranes-Bachar
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Nuclear export of Ho endonuclease of yeast via Msn5. Curr Genet 2008; 54:271-81. [PMID: 18807043 DOI: 10.1007/s00294-008-0216-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
Exportin-5, an evolutionarily conserved nuclear export factor of the beta-karyopherin family, exports phosphorylated proteins and small noncoding RNAs. Msn5, the yeast ortholog, exports primarily phosphorylated cargoes including Ho endonuclease and a number of transcription factors and regulatory proteins. The Msn5-mediated nuclear export of Ho is dependent on phosphorylation of Thr225 by kinases of the DNA damage response pathway. Although Msn5 has been the object of many studies, no NES sequence capable of binding the exportin and/or of leading to Msn5-dependent export of a heterologous protein has been identified. Here we report identification of a 13-residue Ho sequence that interacts with Msn5 in vitro and directs Msn5-dependent nuclear export of GFP in vivo. A single point mutation in this 13-mer Ho NES abrogates both interaction with Msn5 and nuclear export of Ho and of GFP. However, this mutation, or of T225A, both of which abrogate nuclear export of Ho, does not interfere with its interaction with Msn5 implying that the exportin makes multiple contacts with its cargo. This can explain the lack of a conserved NES in Msn5 cargoes. Our results identify essential criteria for Msn5-mediated nuclear export of Ho: phosphorylation on HoT225, and interaction with the 13-mer Ho NES sequence.
Collapse
|
15
|
|
16
|
Robbins JB, Stapleton M, Stanger MJ, Smith D, Dansereau JT, Derbyshire V, Belfort M. Homing endonuclease I-TevIII: dimerization as a means to a double-strand break. Nucleic Acids Res 2007; 35:1589-600. [PMID: 17289754 PMCID: PMC1865063 DOI: 10.1093/nar/gkl1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is not. Phage RB3 is a close relative of T4 and has a lengthier nrdB intron. Here, we describe I-TevIII, the H-N-H endonuclease encoded by the RB3 nrdB intron. In contrast to previous reports, we demonstrate that this intron is mobile, and that this mobility is dependent on I-TevIII, which generates 2-nt 3' extensions. The enzyme has a distinct catalytic domain, which contains the H-N-H motif, and DNA-binding domain, which contains two zinc fingers required for interaction with the DNA substrate. Most importantly, I-TevIII, unlike the H-N-H endonucleases described so far, makes a double-strand break on the DNA homing site by acting as a dimer. Through deletion analysis, the dimerization interface was mapped to the DNA-binding domain. The unusual propensity of I-TevIII to dimerize to achieve cleavage of both DNA strands underscores the versatility of the H-N-H enzyme family.
Collapse
Affiliation(s)
- Justin B. Robbins
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
| | - Michelle Stapleton
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
| | - Matthew J. Stanger
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
| | - Dorie Smith
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
| | - John T. Dansereau
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
| | - Victoria Derbyshire
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
| | - Marlene Belfort
- Wadsworth Center, New York State Department of Health, Center for Medical Science and Department of Biomedical Sciences, School of Public Health, SUNY, 150 New Scotland Avenue, Albany, NY 12208
- *To whom correspondence should be addressed. +518 473 3345+518 474 3181
| |
Collapse
|
17
|
Bakhrat A, Baranes K, Krichevsky O, Rom I, Schlenstedt G, Pietrokovski S, Raveh D. Nuclear import of ho endonuclease utilizes two nuclear localization signals and four importins of the ribosomal import system. J Biol Chem 2006; 281:12218-26. [PMID: 16507575 DOI: 10.1074/jbc.m600238200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity of Ho, the yeast mating switch endonuclease, is restricted to a narrow time window of the cell cycle. Ho is unstable and despite being a nuclear protein is exported to the cytoplasm for proteasomal degradation. We report here the molecular basis for the highly efficient nuclear import of Ho and the relation between its short half-life and passage through the nucleus. The Ho nuclear import machinery is functionally redundant, being based on two bipartite nuclear localization signals, recognized by four importins of the ribosomal import system. Ho degradation is regulated by the DNA damage response and Ho retained in the cytoplasm is stabilized, implying that Ho acquires its crucial degradation signals in the nucleus. Ho arose by domestication of a fungal VMA1 intein. A comparison of the primary sequences of Ho and fungal VMA1 inteins shows that the Ho nuclear localization signals are highly conserved in all Ho proteins, but are absent from VMA1 inteins. Thus adoption of a highly efficient import strategy occurred very early in the evolution of Ho. This may have been a crucial factor in establishment of homothallism in yeast, and a key event in the rise of the Saccharomyces sensu stricto.
Collapse
Affiliation(s)
- Anya Bakhrat
- Department of Life Sciences, Ben Gurion University of the Negev, P. O. Box 653, 84105 Beersheba, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, Raveh D. The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol 2005; 25:5355-62. [PMID: 15964793 PMCID: PMC1156969 DOI: 10.1128/mcb.25.13.5355-5362.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 02/10/2005] [Accepted: 03/23/2005] [Indexed: 11/20/2022] Open
Abstract
Ho endonuclease initiates a mating type switch by making a double-strand break at the mating type locus, MAT. Ho is marked by phosphorylation for rapid destruction by functions of the DNA damage response, MEC1, RAD9, and CHK1. Phosphorylated Ho is recruited for ubiquitylation via the SCF ubiquitin ligase complex by the F-box protein, Ufo1. Here we identify a further DNA damage-inducible protein, the UbL-UbA protein Ddi1, specifically required for Ho degradation. Ho interacts only with Ddi1; it does not interact with the other UbL-UbA proteins, Rad23 or Dsk2. Ho must be ubiquitylated to interact with Ddi1, and there is no interaction when Ho is produced in mec1 or Deltaufo1 mutants that do not support its degradation. Ddi1 binds the proteasome via its N-terminal ubiquitin-like domain (UbL) and interacts with ubiquitylated Ho via its ubiquitin-associated domain (UbA); both domains of Ddi1 are required for association of ubiquitylated Ho with the proteasome. Despite being a nuclear protein, Ho is exported to the cytoplasm for degradation. In the absence of Ddi1, ubiquitylated Ho is stabilized and accumulates in the cytoplasm. These results establish a role for Ddi1 in the degradation of a natural ubiquitylated substrate. The specific interaction between Ho and Ddi1 identifies an additional function associated with DNA damage involved in its degradation.
Collapse
Affiliation(s)
- Ludmila Kaplun
- Department of Life Sciences, Ben Gurion University of Negev, P.O. Box 653, Beersheba 84105, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Koufopanou V, Burt A. Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis. Mol Biol Evol 2005; 22:1535-8. [PMID: 15843599 DOI: 10.1093/molbev/msi149] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.
Collapse
|
20
|
Egel R. Fission yeast mating-type switching: programmed damage and repair. DNA Repair (Amst) 2005; 4:525-36. [PMID: 15811625 DOI: 10.1016/j.dnarep.2004.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2004] [Indexed: 11/17/2022]
Abstract
Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe only affects a single strand, which can be sealed by gap repair in situ, whether or not it serves as an imprint for subsequent switching of mating type from an appropriate donor cassette. Recent papers have linked the transient stalling of a replication fork to the generation of a site-specific nick. This discontinuity then remains protected for a full cell cycle, until it interferes with replication in the next S-phase. It, thereby, represents a valuable model system to study the molecular safeguards to protect a replication fork at a predetermined hindrance to leading-strand extension. The versatility of this experimental system has increased further yet by the recent development of a conditional setup, where imprinting and switching can be repressed or derepressed in response to external stimuli.
Collapse
Affiliation(s)
- Richard Egel
- Department of Genetics, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| |
Collapse
|
21
|
Burt A, Koufopanou V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 2004; 14:609-15. [PMID: 15531154 DOI: 10.1016/j.gde.2004.09.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homing endonuclease genes (HEGs) are selfish genetic elements that spread by first cleaving chromosomes that do not contain them and then getting copied across to the broken chromosome as a byproduct of the repair process. The success of this strategy will depend on the opportunities for homing--in other words, the frequency with which HEG(+) and HEG(-) chromosomes come into contact--which varies widely among host taxa. HEGs are also unusual in that the selection pressure for endonuclease function disappears if they become fixed in a population, which makes them susceptible to degeneration and imposes a need for regular horizontal transmission between species. HEGs will be selected to reduce the harm done to the host organism, and this is expected to influence the evolution of their sequence specificity and maturase functions. HEGs may also be domesticated by their hosts, and are currently being put to human uses.
Collapse
Affiliation(s)
- Austin Burt
- Department of Biological Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK.
| | | |
Collapse
|