1
|
Han X, Qi J, Yang Y, Zheng B, Liu M, Liu Y, Li L, Guan S, Jia Q, Chu L. Protective mechanisms of 10-gingerol against myocardial ischemia may involve activation of JAK2/STAT3 pathway and regulation of Ca 2+ homeostasis. Biomed Pharmacother 2022; 151:113082. [PMID: 35569350 DOI: 10.1016/j.biopha.2022.113082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
10-Gingerol (10-Gin), an active ingredient extracted from ginger, has been reported to have beneficial effects on the cardiovascular system. However, its protective effects on myocardial ischemia (MI) and the underlying cellular mechanisms are still unclear. To investigate the protection conferred by 10-Gin against MI injury and its potential mechanisms in cardiomyocytes via patch-clamp and molecular biology techniques. A rat MI model was established using the subcutaneous injection of isoproterenol (85 mg/kg) administered on two consecutive days. 10-Gin was pre-administered to rats for seven days to assess its cardio-protection. The patch-clamp and IonOptix Myocam detection techniques were used to investigated 10-Gin's effects on L-type Ca2+ channels (LTCCs), Ca2+ transients and cell contractility in isolated rat cardiomyocytes. 10-Gin administration alleviated MI injury, improved cardiac function and myocardial histopathology, reduced myocardial infarct area, downregulated oxidative stress and Ca2+ levels, and decreased the expression of apoptotic factors. Importantly, 10-Gin led to an increase in phosphorylated Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2 and STAT3, respectively) expressions. Furthermore, 10-Gin inhibited LTCCs in a concentration-dependent manner with a half-maximal inhibitory concentration of 75.96 μM. Moreover, 10-Gin administration inhibited Ca2+ transients and cell contractility. Our results suggest that 10-Gin exerts cardioprotective effects on MI in vivo and in vitro in connection with the inhibition of oxidative stress and apoptosis via activation of the JAK2/STAT3 signalling pathway, and regulation of Ca2+ homeostasis by LTCCs.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Yu Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050200, China
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, China; School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China.
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050200, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050200, China.
| |
Collapse
|
2
|
Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643615. [PMID: 34093960 PMCID: PMC8163549 DOI: 10.1155/2021/6643615] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is an urgent problem with a great impact on health globally. However, its pathological mechanisms have not been fully elucidated. Hydroxysafflor yellow A (HSYA) has a protective effect against MI/RI. This study is aimed at further clarifying the relationship between HSYA cardioprotection and calcium overload as well as the underlying mechanisms. We verified the protective effect of HSYA on neonatal rat primary cardiomyocytes (NPCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from hypoxia-reoxygenation (HR) injury. To explore the cardioprotective mechanism of HSYA, we employed calcium fluorescence, TUNEL assay, JC-1 staining, and western blotting. Finally, cardio-ECR and patch-clamp experiments were used to explain the regulation of L-type calcium channels (LTCC) in cardioprotection mediated by HSYA. The results showed that HSYA reduced the levels of myocardial enzymes and protected NPCMs from HR injury. HSYA also restored the contractile function of hiPSC-CMs and field potential signal abnormalities caused by HR and exerted a protective effect on cardiac function. Further, we demonstrated that HSYA protects cardiomyocytes from HR injury by decreasing mitochondrial membrane potential and inhibiting apoptosis and calcium overload. Patch-clamp results revealed that MI/RI caused a sharp increase in calcium currents, which was inhibited by pretreatment with HSYA. Furthermore, we found that HSYA restored contraction amplitude, beat rate, and field potential duration of hiPSC-CMs, which were disrupted by the LTCC agonist Bay-K8644. Patch-clamp experiments also showed that HSYA inhibits Bay-K8644-induced calcium current, with an effect similar to that of the LTCC inhibitor nisoldipine. Therefore, our data suggest that HSYA targets LTCC to inhibit calcium overload and apoptosis of cardiomyocytes, thereby exerting a cardioprotective effect and reducing MI/RI injury.
Collapse
|