1
|
Yamamoto T, Emoto Y, Murase T, Umehara T, Miura A, Nishiguchi M, Ikematsu K, Nishio H. Molecular autopsy for sudden death in Japan. J Toxicol Pathol 2024; 37:1-10. [PMID: 38283375 PMCID: PMC10811381 DOI: 10.1293/tox.2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/17/2023] [Indexed: 01/30/2024] Open
Abstract
Japan has various death investigation systems; however, external examinations, postmortem computed tomography, macroscopic examinations, and microscopic examinations are performed regardless of the system used. These examinations can reveal morphological abnormalities, whereas the cause of death in cases with non-morphological abnormalities can be detected through additional examinations. Molecular autopsy and postmortem genetic analyses are important additional examinations. They are capable of detecting inherited arrhythmias or inherited metabolic diseases, which are representative non-morphological disorders that cause sudden death, especially in infants and young people. In this review, we introduce molecular autopsy reports from Japan and describe our experience with representative cases. The relationships between drug-related deaths and genetic variants are also reviewed. Based on the presented information, molecular autopsy is expected to be used as routine examinations in death investigations because they can provide information to save new lives.
Collapse
Affiliation(s)
- Takuma Yamamoto
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Yuko Emoto
- Department of Legal Medicine, Kansai Medical University,
2-5-1 Shinmachi, Hirakata-shi, Osaka 573-1010, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Takahiro Umehara
- Department of Forensic Medicine, School of Medicine,
University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku,
Kitakyushu-shi, Fukuoka 807-8555, Japan
| | - Aya Miura
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Minori Nishiguchi
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| |
Collapse
|
2
|
Hypertrophic and fibrotic human PKD hearts are associated with macrophage infiltration and abnormal TGF-β 1 signaling. Cell Tissue Res 2023; 391:189-203. [PMID: 36376769 PMCID: PMC10100231 DOI: 10.1007/s00441-022-03704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Autosomal dominant polycystic kidney disease (PKD) is a hereditary kidney disorder which can affect cardiovascular system. Cardiac hypertrophy and cardiomyopathy in PKD have been reported by echocardiography analyses, but histopathology analyses of human PKD hearts have never been examined. The current studies evaluated human heart tissues from five subjects without PKD (non-PKD) and five subjects with PKD. Our histopathology data of human PKD hearts showed an increased extracellular matrix associated with cardiac hypertrophy and fibrosis. Hypertrophy- and fibrosis-associated pathways involving abnormal cardiac structure were next analyzed. We found that human PKD myocardium was infiltrated by inflammatory macrophage M1 and M2; expression of transforming growth factor (TGF-β1) and its receptor were upregulated with overexpression of pSmad3 and β-catenin. Because patients with PKD have an abnormal kidney function that could potentially affect heart structure, we used a heart-specific PKD mouse model to validate that cardiac hypertrophy and fibrosis were independent from polycystic kidney. In summary, our data show that hearts from human PKD were characterized by hypertrophy, interstitial fibrosis, perivascular fibrosis, and conduction system fibrosis with upregulated TGF-β1 and its receptor. We suggest that such structural abnormalities may predispose to systolic and diastolic cardiac dysfunction in the PKD myocardium.
Collapse
|
3
|
Amirrad F, Pala R, Shamloo K, Muntean BS, Nauli SM. Arrhythmogenic Hearts in PKD2 Mutant Mice Are Characterized by Cardiac Fibrosis, Systolic, and Diastolic Dysfunctions. Front Cardiovasc Med 2021; 8:772961. [PMID: 34901233 PMCID: PMC8661014 DOI: 10.3389/fcvm.2021.772961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (PKD) is a hereditary disorder affecting multiple organs, including the heart. PKD has been associated with many cardiac abnormalities including the arrhythmogenic remodeling in clinical evaluations. In our current study, we hypothesized that Pkd2 gene mutation results in structural and functional defects in the myocardium. The structural and functional changes of Pkd2 mutant hearts were analyzed in the myocardial-specific Pkd2 knockout (KO) mouse. We further assessed a potential role of TGF-b1 signaling in the pathology of Pkd2-KO hearts. Hearts from age-matched 6-month-old MyH6•Pkd2 wt/wt (control or wild-type) and MyH6•Pkd2 flox/flox (mutant or Pkd2-KO) mice were used to study differential heart structure and function. Cardiac histology was used to study structure, and the "isolated working heart" system was adapted to mount and perfuse mouse heart to measure different cardiac parameters. We found that macrophage1 (M1) and macrophage 2 (M2) infiltration, transforming growth factor (TGF-b1) and TGF-b1 receptor expressions were significantly higher in Pkd2-KO, compared to wild-type hearts. The increase in the extracellular matrix in Pkd2-KO myocardium led to cardiac hypertrophy, interstitial and conduction system fibrosis, causing cardiac dysfunction with a predisposition to arrhythmia. Left ventricular (LV) expansion or compliance and LV filling were impaired in fibrotic Pkd2-KO hearts, resulted in diastolic dysfunction. LV systolic contractility and elastance decreased in fibrotic Pkd2-KO hearts, resulted in systolic dysfunction. Compared to wild-type hearts, Pkd2-KO hearts were less responsive to the pharmacological stress-test and changes in preload. In conclusion, Pkd2-KO mice had systolic and diastolic dysfunction with arrhythmogenic hearts.
Collapse
Affiliation(s)
- Farideh Amirrad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States.,Department of Medicine, University of California, Irvine, Orange, CA, United States
| | - Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Kiumars Shamloo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Brian S Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States.,Department of Medicine, University of California, Irvine, Orange, CA, United States
| |
Collapse
|
4
|
Miura A, Kondo H, Yamamoto T, Okumura Y, Nishio H. Sudden Unexpected Death of Infantile Dilated Cardiomyopathy with JPH2 and PKD1 Gene Variants. Int Heart J 2020; 61:1079-1083. [PMID: 32879264 DOI: 10.1536/ihj.20-155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Japanese girl with polycystic kidney disease (PKD) developed normally, but at 8 months of age, she was hospitalized for acute onset dyspnea. On the day after admission to hospital, her general condition suddenly became worse. An echocardiogram showed left ventricular dilatation with thin walls, severe mitral valve regurgitation, and a reduced ejection fraction. She died of acute cardiac failure 3 hours after the sudden change. Postmortem analysis with light microscopy showed disarray of cardiomyocytes without obvious infiltration of lymphocytes, and we diagnosed her heart failure as idiopathic dilated cardiomyopathy (DCM). Clinical exome sequencing showed compound heterozygous variants in JPH2 (p.T237A/p.I414L) and a heterozygous nonsense mutation in PKD1 (p.Q4193*). To date, several variants in the JPH2 gene have been reported to be pathogenic for adult-onset hypertrophic cardiomyopathy or DCM in an autosomal dominant manner and infantile-onset DCM in an autosomal recessive manner. Additionally, autosomal dominant polycystic kidney disease is a systemic disease associated with several extrarenal manifestations, such as cardiomyopathy. Here we report a sudden infant death case of DCM and discuss the genetic variants of DCM and PKD.
Collapse
Affiliation(s)
- Aya Miura
- Department of Legal Medicine, Hyogo College of Medicine
| | - Hidehito Kondo
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital
| | | | - Yasuko Okumura
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo College of Medicine
| |
Collapse
|