1
|
Xu Z, Moreno-Giró À, Zhao D, Krämer A, Pandey RK, Xu B, Lundström SL, Holmdahl R. Fcgr2b and Fcgr3 are the major genetic factors for cartilage antibody-induced arthritis, overriding the effect of Hc encoding complement C5. Eur J Immunol 2024; 54:e2350659. [PMID: 38314895 DOI: 10.1002/eji.202350659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Like rheumatoid arthritis (RA) in humans, collagen-induced arthritis (CIA) in mice is associated with not only MHC class II genetic polymorphism but also, to some extent, with other loci including genes encoding Fc gamma receptors (FCGRs) and complement C5. In this study, we used a cartilage antibody-induced arthritis (CAIA) model in which arthritis develops within a 12-h timeframe, to determine the relative importance of FCGRs and C5 (Hc). In CAIA, inhibiting or deleting FCGR3 substantially hindered arthritis development, underscoring the crucial role of this receptor. Blocking FCGR3 also reduced the levels of FCGR4, and vice versa. When employing an IgG1 arthritogenic cocktail that exclusively interacts with FCGR2B and FCGR3, joint inflammation was promptly initiated in Fcgr2b-- mice but not in Fcgr3-- mice, suggesting that FCGR3 is sufficient for CAIA development. Regarding complement activation, Fcgr2b++.Hc** mice with C5 mutated were fully resistant to CAIA, whereas Fcgr2b--.Hc** mice developed arthritis rapidly. We conclude that FCGR3 is essential and sufficient for CAIA development, particularly when induced by IgG1 antibodies. The human ortholog of mouse FCGR3, FCGR2A, may be associated with RA pathogenesis. FCGR2B deficiency allows for rapid arthritis progression and overrides the resistance conferred by C5 deficiency.
Collapse
Affiliation(s)
- Zhongwei Xu
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Àlex Moreno-Giró
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Redoxis AB, Lund, Sweden
| | - Danxia Zhao
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Alexander Krämer
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rajan Kumar Pandey
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bingze Xu
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Chen M, Edwards SR, Maskey D, Woodruff TM, Tomlinson S, Reutens D. Complement Component 5 (C5) Deficiency Improves Cognitive Outcome After Traumatic Brain Injury and Enhances Treatment Effects of Complement Inhibitors C1-Inh and CR2-Crry in a Mouse Model. Neurotrauma Rep 2023; 4:663-681. [PMID: 37908321 PMCID: PMC10615070 DOI: 10.1089/neur.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
A potent effector of innate immunity, the complement system contributes significantly to the pathophysiology of traumatic brain injury (TBI). This study investigated the role of the complement cascade in neurobehavioral outcomes and neuropathology after TBI. Agents acting at different levels of the complement system, including 1) C1 esterase inhibitor (C1-Inh), 2) CR2-Crry, an inhibitor of all pathways acting at C3, and 3) the selective C5aR1 antagonist, PMX205, were administered at 1 h post-TBI. Their effects were evaluated on motor function using the rotarod apparatus, cognitive function using the active place avoidance (APA) task, and brain lesion size at a chronic stage after controlled cortical impact injury in C5-sufficient (C5+/+) and C5-deficient (C5-/-) CD1 mice. In post-TBI C5+/+ mice, rotarod performance was improved by CR2-Crry, APA performance was improved by CR2-Crry and PMX205, and brain lesion size was reduced by PMX205. After TBI, C5-/- mice performed better in the APA task compared with C5+/+ mice. C5 deficiency enhanced the effect of C1-Inh on motor function and brain damage and the effect of CR2-Crry on brain damage after TBI. Our findings support critical roles for C3 in motor deficits, the C3/C5/C5aR1 axis in cognitive deficits, and C5aR1 signaling in brain damage after TBI. Findings suggest the combination of C5 inhibition with C1-Inh and CR2-Crry as potential therapeutic strategies in TBI.
Collapse
Affiliation(s)
- Min Chen
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen R. Edwards
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Dhiraj Maskey
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen Tomlinson
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Reutens
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Ding P, Li L, Li L, Lv X, Zhou D, Wang Q, Chen J, Yang C, Xu E, Dai W, Zhang X, Wang N, Wang Q, Zhang W, Zhang L, Zhou Y, Gu H, Lei Q, Zhou X, Hu W. C5aR1 is a master regulator in Colorectal Tumorigenesis via Immune modulation. Theranostics 2020; 10:8619-8632. [PMID: 32754267 PMCID: PMC7392014 DOI: 10.7150/thno.45058] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous factors have been claimed to play important roles in colorectal cancer (CRC) tumorigenesis, including myeloid-derived suppressor cells (MDSCs) and other immune cells, cytokines, and chemokines; however, the precise mechanisms of colorectal tumorigenesis remain elusive, and there is a lack of effective preventive treatments. Here, we investigated the role of complement system, a key regulator of immune surveillance and homeostasis, in colorectal tumorigenesis. Methods: The prototypical CRC model was induced by combined administration of azoxymethane (AOM)/ dextran sulfate sodium (DSS) in Wild-type (WT), C3-, C5-, C5ar1-, and C5ar2-deficient mice. Using flow cytometry, immunohistochemical staining and multiplex bead assay, we profiled the immune cells, cytokines and chemokines. Bone marrow transplantation was employed to determine the contribution of immune cells in colorectal tumorigenesis. Further, we used C5aR1 antagonist PMX205 to investigate the protective role in colorectal tumorigenesis. Results: Complement was extensively activated in inflamed tissues of AOM/DSS-induced murine CRC model, leading to multifaceted consequences. The deficiency of complement C5 or especially C5ar1, but not C3 almost completely prevented CRC tumorigenesis. C5a/C5aR1 signaling recruited MDSCs into the inflamed colorectum to impair CD8+ T cells, and modulated the production of critical cytokines and chemokines, thus initiating CRC. Moreover, the C5aR1 antagonist PMX205 strongly impeded colorectal tumorigenesis. Bone marrow transplantation further revealed that C5aR1 expression by immune cells was critical for colorectal tumorigenesis. Conclusion: Our study identifies C5a/C5aR1 signaling as a vital immunomodulatory program in CRC tumorigenesis and suggests a feasible preventive strategy.
Collapse
|
4
|
Hu C, Li L, Ding P, Li L, Ge X, Zheng L, Wang X, Wang J, Zhang W, Wang N, Gu H, Zhong F, Xu M, Rong R, Zhu T, Hu W. Complement Inhibitor CRIg/FH Ameliorates Renal Ischemia Reperfusion Injury via Activation of PI3K/AKT Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3717-3730. [PMID: 30429287 PMCID: PMC6287101 DOI: 10.4049/jimmunol.1800987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Complement activation is involved in the pathogenesis of ischemia reperfusion injury (IRI), which is an inevitable process during kidney transplantation. Therefore, complement-targeted therapeutics hold great potential in protecting the allografts from IRI. We observed universal deposition of C3d and membrane attack complex in human renal allografts with delayed graft function or biopsy-proved rejection, which confirmed the involvement of complement in IRI. Using FB-, C3-, C4-, C5-, C5aR1-, C5aR2-, and C6-deficient mice, we found that all components, except C5aR2 deficiency, significantly alleviated renal IRI to varying degrees. These gene deficiencies reduced local (deposition of C3d and membrane attack complex) and systemic (serum levels of C3a and C5a) complement activation, attenuated pathological damage, suppressed apoptosis, and restored the levels of multiple local cytokines (e.g., reduced IL-1β, IL-9, and IL-12p40 and increased IL-4, IL-5, IL-10, and IL-13) in various gene-deficient mice, which resulted in the eventual recovery of renal function. In addition, we demonstrated that CRIg/FH, which is a targeted complement inhibitor for the classical and primarily alternative pathways, exerted a robust renoprotective effect that was comparable to gene deficiency using similar mechanisms. Further, we revealed that PI3K/AKT activation, predominantly in glomeruli that was remarkably inhibited by IRI, played an essential role in the CRIg/FH renoprotective effect. The specific PI3K antagonist duvelisib almost completely abrogated AKT phosphorylation, thus abolishing the renoprotective role of CRIg/FH. Our findings suggested that complement activation at multiple stages induced renal IRI, and CRIg/FH and/or PI3K/AKT agonists may hold the potential in ameliorating renal IRI.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; and
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jina Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Na Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Hongyu Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Fan Zhong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China;
- Department of Oncology, Fudan University, Shanghai 200032, China
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|