1
|
SASAKI H, YANG T, ZHANG M, LI R, MORI T, YI SQ. Microbiological assessment of Suncus murinus bred and managed as laboratory animals. J Vet Med Sci 2024; 86:92-95. [PMID: 38008441 PMCID: PMC10849853 DOI: 10.1292/jvms.23-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023] Open
Abstract
Suncus murinus is gaining prominence as a laboratory animal; however, there is no generally accepted method for microbiological monitoring. This study aimed to apply non-serological microbiological monitoring of laboratory mice for S. murinus and identify the subdominant species obtained by culture methods for microbial assessment. Culture and PCR were used to test S. murinus for the laboratory mice test panels including 10 bacterial species and orthohantaviruses, all of which were negative. The species that grew sub-dominantly in rectal feces were identified as Aeromonas hydrophila, which is pathogenic to mammals. These results indicate that microbiological monitoring should be used to detect pathogens directly from S. murinus, not from sentinel animals, due to the host-specific microbial environment.
Collapse
Affiliation(s)
- Hiraku SASAKI
- Laboratory of Environmental Hygiene, Department of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Ting YANG
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Mingshou ZHANG
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Rujia LI
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Taichi MORI
- Laboratory of Environmental Hygiene, Department of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shuang-Qin YI
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
2
|
Hu X, Yang L, Zhang Y, Yang M, Li J, Fan Y, Guo P, Tian Z. Fecal and oral microbiome analysis of snakes from China reveals a novel natural emerging disease reservoir. Front Microbiol 2024; 14:1339188. [PMID: 38274764 PMCID: PMC10808610 DOI: 10.3389/fmicb.2023.1339188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The gastrointestinal tract and oral cavity of animal species harbor complex microbial communities, the composition of which is indicative of the behavior, co-evolution, diet, and immune system of the host. Methods This study investigated the microbial composition in snakes from varying altitudinal ranges by assessing the fecal and oral bacterial communities in Protobothrops mucrosquamatus, Elaphe dione, and Gloydius angusticeps from Sichuan Province, China, using metagenomic sequencing. Results and discussion It was revealed that Bacteroidetes, Proteobacteria, Firmicutes, and Fusobacteria were the core microbial phyla in fecal samples across all three species, while Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were the core microbial phyla in oral samples across all three species. Notably, the dominance of Armatimonadetes was documented for the first time in the feces of all three species. Comparative analysis of the microbiomes of the three species indicated distinct microbiological profiles between snakes living at low- and high-altitude regions. Furthermore, 12 to 17 and 22 to 31 bacterial pathogens were detected in the oral and fecal samples, respectively, suggesting that snakes may serve as a novel reservoir for emerging diseases. Overall, this study provides a comparative analysis of the fecal and oral microbiomes in three snake species. Future investigations are anticipated to further elucidate the influence of age, genetics, behavior, diet, environment, ecology, and evolution on the gut and oral microbial communities of snakes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhige Tian
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, China
| |
Collapse
|
3
|
Zhang M, Yang T, Li R, Ren K, Li J, He M, Chen J, Yi SQ. Gut microbiota of Suncus murinus, a naturally obesity-resistant animal, improves the ecological diversity of the gut microbiota in high-fat-diet-induced obese mice. PLoS One 2023; 18:e0293213. [PMID: 37992054 PMCID: PMC10664932 DOI: 10.1371/journal.pone.0293213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/07/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The global population of obese individuals is increasing, affecting human health. High-fat diets are a leading cause of this epidemic, and animal models, such as mice, are often used in related research. Obese individuals have a different gut microbiota composition from non-obese ones, characterized by a sizeable population of certain bacteria associated with fat storage. The gut microbiome plays a significant role in regulating human physiological and metabolic functions. Links between obesity, high-fat diets and gut microbiota have become hot topics of discussion. Recently, research on the modulation of the gut microbiota has focused on fecal microbiota transplantation (FMT), which has been recognized as an effective method of studying the function of gut microbiota. OBJECTIVES The purpose of this study was to investigate how the gut microbiota of Suncus murinus, a naturally obesity-resistant animal, through FMT, affected the ecology of the gut microbiota of high-fat diet induced obese mice. METHODS In this study, Suncus murinus was used as a donor for FMT. High-fat diet induced C57BL/6NCrSIc mice were used as recipients, the body weight changes were measured and changes in their gut flora were analyzed using a 16S rRNA gene analysis. RESULTS The study found that, after the FMT procedure, the FMT group tended to have a lower body weight than the control group. At the phylum level, the most predominant phyla in all groups were Firmicutes and Proteobacteria, while Deferribacteres was not detected in the FMT or antibiotic administration groups, and Bacteroidetes was not present in the antibiotic administration group. At the genus level, the FMT group had significantly lower OTU richness than the control group but greater diversity than the control group. CONCLUSIONS These results indicate that FMT from Suncus murinus can help reorganize and improve the gut microbiota of mice in a balanced and diverse ecosystem.
Collapse
Affiliation(s)
- Mingshou Zhang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ting Yang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Rujia Li
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ke Ren
- Faculty of Physical Education, Qujing Normal University, Qujing, Yun Nan, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Maozhang He
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juefei Chen
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Zhang M, Sasaki H, Yang T, Chen J, Li R, Yi C, Li J, He M, Yi SQ. Fecal microbiota transplantation from Suncus murinus, an obesity-resistant animal, to C57BL/6NCrSIc mice, and the antibiotic effects in the approach. Front Microbiol 2023; 14:1138983. [PMID: 37089571 PMCID: PMC10117937 DOI: 10.3389/fmicb.2023.1138983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionImportant studies on the relationship of the intestinal microbial flora with obesity have uncovered profound changes in the composition of the gut microbiota in obese individuals. Animal studies successfully altered body phenotypes by fecal microbiota transplantation (FMT).MethodsIn this study, we analyzed the gut microbiome of Suncus murinus (S. murinus), a naturally obesity-resistant animal, and the changes of the gut flora of C57BL/6NCrSIc mice that received gut bacteria transplantation from S. murinus by 16S rRNA gene analysis method. And analyzed and discussed the possible impact of the use of antibiotics before transplantation on the outcome of transplantation.ResultsOur results showed no significant changes in body weight in the FMT group compared to the control (AB) group, but large fluctuations due to antibiotics. There was no change in blood lipid levels between groups before and after FMT. The gut microbiota of S. murinus were enriched in Firmicutes and Proteobacteria, while Bacteroidetes were not detected, and fewer OTUs were detected in the intestine gut in comparison to other mouse groups. Statistically significant differences in alpha diversity were observed between the FMT group and other groups. Furthermore, a beta diversity analysis indicated an apparent structural separation between the FMT group and other groups.ConclusionIt was suggested that the gut flora of S. murinus was not well established in the gut trace of mice through FMT, and the administration of antibiotics before transplantation was an important factor affecting the overall composition of the gut flora. Although FMT of S. murinus failed to completely colonize the intestinal tract of the mice, it still had a certain effect on the establishment of the intestinal flora of the mice. The unpredictable effects of pre-transplantation antibiotics on the results of transplantation cannot be ignored.
Collapse
Affiliation(s)
- Mingshou Zhang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiraku Sasaki
- Department of Health Science, School of Health and Sports Science, Juntendo University, Bunkyō, Japan
| | - Ting Yang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Juefei Chen
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Rujia Li
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Cheng Yi
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Maozhang He
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- *Correspondence: Shuang-Qin Yi,
| |
Collapse
|
5
|
Koziol A, Odriozola I, Nyholm L, Leonard A, San José C, Pauperio J, Ferreira C, Hansen AJ, Aizpurua O, Gilbert MTP, Alberdi A. Enriching captivity conditions with natural elements does not prevent the loss of wild-like gut microbiota but shapes its compositional variation in two small mammals. Microbiologyopen 2022; 11:e1318. [PMID: 36314753 PMCID: PMC9517064 DOI: 10.1002/mbo3.1318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
As continued growth in gut microbiota studies in captive and model animals elucidates the importance of their role in host biology, further pursuit of how to retain a wild-like microbial community is becoming increasingly important to obtain representative results from captive animals. In this study, we assessed how the gut microbiota of two wild-caught small mammals, namely Crocidura russula (Eulipotyphla, insectivore) and Apodemus sylvaticus (Rodentia, omnivore), changed when bringing them into captivity. We analyzed fecal samples of 15 A. sylvaticus and 21 C. russula, immediately after bringing them into captivity and 5 weeks later, spread over two housing treatments: a "natural" setup enriched with elements freshly collected from nature and a "laboratory" setup with sterile artificial elements. Through sequencing of the V3-V4 region of the 16S recombinant RNA gene, we found that the initial microbial diversity dropped during captivity in both species, regardless of treatment. Community composition underwent a change of similar magnitude in both species and under both treatments. However, we did observe that the temporal development of the gut microbiome took different trajectories (i.e., changed in different directions) under different treatments, particularly in C. russula, suggesting that C. russula may be more susceptible to environmental change. The results of this experiment do not support the use of microbially enriched environments to retain wild-like microbial diversities and compositions, yet show that specific housing conditions can significantly affect the drift of microbial communities under captivity.
Collapse
Affiliation(s)
- Adam Koziol
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Iñaki Odriozola
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Lasse Nyholm
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Aoife Leonard
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Carlos San José
- Biodonostia Health Research InstituteDonostia‐San SebastianSpain
| | - Joana Pauperio
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVila do CondeCampus de VairãoPortugal
| | - Clara Ferreira
- Animal Ecology, Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Anders J. Hansen
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Tian Z, Pu H, Cai D, Luo G, Zhao L, Li K, Zou J, Zhao X, Yu M, Wu Y, Yang T, Guo P, Hu X. Characterization of the bacterial microbiota in different gut and oral compartments of splendid japalure (Japalura sensu lato). BMC Vet Res 2022; 18:205. [PMID: 35624481 PMCID: PMC9137078 DOI: 10.1186/s12917-022-03300-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut and oral microbes form complex communities and play key roles in co-evolution with their hosts. However, little is understood about the bacterial community in lizards. Results In this study, we investigated the gut and oral bacterial communities in Japalura sensu lato from Sichuan Province, China, using 16S rRNA gene sequencing. Results showed that Bacteroidota (36.5%) and Firmicutes (32.8%) were the main phyla in the gut, while Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota were the dominant phyla in the oral cavity. 16 S rRNA sequencing analysis of fecal samples showed that: (1) Bacteroidota was the most abundant in Japalura sensu lato, which was different from the bacterial community of insectivorous animals; (2) Bacteroidota, Firmicutes, Actinobacteriota, Fusobacteriota, and Cyanobacteria were the most abundant phylum in Japalura sensu lato. (3) Proteobacteria was the dominant phylum in Japalura sensu lato and other domestic insectivorous lizards (Shinisaurus crocodilurus, Phrynocephalus vlangalii, and Takydromus septentrionalis); (4) Comparing with the bacterial community of Shinisaurus crocodilurus, Phrynocephalus vlangalii, Takydromus septentrionalis, Liolaemus parvus, L. ruibali, and Phymaturus williamsi, Desulfobacterota was uniquely present in the gut of Japalura sensu lato. 16 S rRNA sequencing of oral samples showed that Chloroflexi and Deinococcota phyla were enriched in the oral cavity, which may have a significant influence on living in extreme environments. Conclusions Thus, based on 16 S rRNA sequencing analysis of the community composition of the gut and oral microbiomes, this study firstly represents a foundation for understanding the gut and oral microbial ecology of Japalura sensu lato, and constitutes a detail account of the diversity of the microbiota inhabiting the gut and oral cavity of Japalura sensu lato. Further researches will continue to reveal how gut and oral microbial communities may be impacting the ecology and evolution of lizards. Supplementary information The online version contains supplementary material available at 10.1186/s12917-022-03300-w.
Collapse
Affiliation(s)
- Zhige Tian
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Hongli Pu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Dongdong Cai
- Sichuan Animal Disease Control Central, 610000, Chengdu, People's Republic of China
| | - Guangmei Luo
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Lili Zhao
- College of Veterinary Medicine, Jilin University, 130000, Changchun, People's Republic of China
| | - Ke Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Jie Zou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Xiang Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Min Yu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Yayong Wu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Tiankuo Yang
- Aviation Medical Appraisal Center, Civil Aviation Flight University of China, 618307, Guanghan, China.
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China.
| | - Xiaoliang Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China.
| |
Collapse
|
7
|
Chiang E, Deblois CL, Carey HV, Suen G. Characterization of captive and wild 13-lined ground squirrel cecal microbiotas using Illumina-based sequencing. Anim Microbiome 2022; 4:1. [PMID: 34980290 PMCID: PMC8722175 DOI: 10.1186/s42523-021-00154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hibernating animals experience extreme changes in diet that make them useful systems for understanding host-microbial symbioses. However, most of our current knowledge about the hibernator gut microbiota is derived from studies using captive animals. Given that there are substantial differences between captive and wild environments, conclusions drawn from studies with captive hibernators may not reflect the gut microbiota's role in the physiology of wild animals. To address this, we used Illumina-based sequencing of the 16S rRNA gene to compare the bacterial cecal microbiotas of captive and wild 13-lined ground squirrels (TLGS) in the summer. As the first study to use Illumina-based technology to compare the microbiotas of an obligate rodent hibernator across the year, we also reported changes in captive TLGS microbiotas in summer, winter, and spring. RESULTS Wild TLGS microbiotas had greater richness and phylogenetic diversity with less variation in beta diversity when compared to captive microbiotas. Taxa identified as core operational taxonomic units (OTUs) and found to significantly contribute to differences in beta diversity were primarily in the families Lachnospiraceae and Ruminococcaceae. Captive TLGS microbiotas shared phyla and core OTUs across the year, but active season (summer and spring) microbiotas had different alpha and beta diversities than winter season microbiotas. CONCLUSIONS This is the first study to compare the microbiotas of captive and wild rodent hibernators. Our findings suggest that data from captive and wild ground squirrels should be interpreted separately due to their distinct microbiotas. Additionally, as the first study to compare seasonal microbiotas of obligate rodent hibernators using Illumina-based 16S rRNA sequencing, we reported changes in captive TLGS microbiotas that are consistent with previous work. Taken together, this study provides foundational information for improving the reproducibility and experimental design of future hibernation microbiota studies.
Collapse
Affiliation(s)
- Edna Chiang
- Microbiology Doctoral Training Program, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Courtney L. Deblois
- Microbiology Doctoral Training Program, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Hannah V. Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Garret Suen
- Present Address: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
8
|
Li F, Yang S, Zhang L, Qiao L, Wang L, He S, Li J, Yang N, Yue B, Zhou C. Comparative metagenomics analysis reveals how the diet shapes the gut microbiota in several small mammals. Ecol Evol 2022; 12:e8470. [PMID: 35136548 PMCID: PMC8809447 DOI: 10.1002/ece3.8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The gut microbiomes of the host are large and complex communities, which helps to maintain homeostasis, improves digestive efficiency, and promotes the development of the immune system. The small mammals distributed in Sichuan Province are the most popular species for biodiversity research in Southwest China. However, the effects of different diets on the structure and function of the gut microbial community of these small mammals are poorly understood. In this study, whole-metagenome shotgun sequencing has been used to analyze the composition and functional structures of the gut microbiota of seven small mammals in Laojunshan National Nature Reserve, Sichuan Province, China. Taxonomic classification revealed that the most abundant phyla in the gut of seven small mammals were Bacteroides, Proteobacteria, and Firmicutes. Moreover, Hafnia, Lactobacillus, and Yersinia were the most abundant genus in the gut microbiomes of these seven species. At the functional level, we annotated a series of KEGG functional pathways, six Cazy categories, and 46,163 AROs in the gut microbiomes of the seven species. Comparative analysis found that the difference in the gut microbiomes between the Soricidea and Muridae concentrated on the increase in the F/B (Firmicutes/Bacteroides) ratio in the Soricidea group, probably driven by the high-fat and -calorie digestive requirements due to their insectivorous diet. The comparative functional profiling revealed that functions related to metabolism and carbohydrates were significantly more abundant in Muridae group, which may be attributed to their high carbohydrate digestion requirements caused by their herbivorous diet. These data suggested that different diets in the host may play an important role in shaping the gut microbiota, and lay the foundation for teasing apart the influences of heritable and environmental factors on the evolution of gut microbial communities.
Collapse
Affiliation(s)
- Fengjun Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Shengzhi Yang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Linwan Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lu Qiao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lei Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Song He
- Laojunshan National Nature ReserveSichuan ProvincePingshanChina
| | - Jian Li
- Laojunshan National Nature ReserveSichuan ProvincePingshanChina
| | - Nan Yang
- Institute of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduChina
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
9
|
He WQ, Xiong YQ, Ge J, Chen YX, Chen XJ, Zhong XS, Ou ZJ, Gao YH, Cheng MJ, Mo Y, Wen YQ, Qiu M, Huo ST, Chen SW, Zheng XY, He H, Li YZ, You FF, Zhang MY, Chen Q. Composition of gut and oropharynx bacterial communities in Rattus norvegicus and Suncus murinus in China. BMC Vet Res 2020; 16:413. [PMID: 33129337 PMCID: PMC7603701 DOI: 10.1186/s12917-020-02619-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background Rattus norvegicus and Suncus murinus are important reservoirs of zoonotic bacterial diseases. An understanding of the composition of gut and oropharynx bacteria in these animals is important for monitoring and preventing such diseases. We therefore examined gut and oropharynx bacterial composition in these animals in China. Results Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in faecal and throat swab samples of both animals. However, the composition of the bacterial community differed significantly between sample types and animal species. Firmicutes exhibited the highest relative abundance in throat swab samples of R. norvegicus, followed by Proteobacteria and Bacteroidetes. In throat swab specimens of S. murinus, Proteobacteria was the predominant phylum, followed by Firmicutes and Bacteroidetes. Firmicutes showed the highest relative abundance in faecal specimens of R. norvegicus, followed by Bacteroidetes and Proteobacteria. Firmicutes and Proteobacteria had almost equal abundance in faecal specimens of S. murinus, with Bacteroidetes accounting for only 3.07%. The family Streptococcaceae was most common in throat swab samples of R. norvegicus, while Prevotellaceae was most common in its faecal samples. Pseudomonadaceae was the predominant family in throat swab samples of S. murinus, while Enterobacteriaceae was most common in faecal samples. We annotated 33.28% sequences from faecal samples of S. murinus as potential human pathogenic bacteria, approximately 3.06-fold those in R. norvegicus. Potential pathogenic bacteria annotated in throat swab samples of S. murinus were 1.35-fold those in R. norvegicus. Conclusions Bacterial composition of throat swabs and faecal samples from R. norvegicus differed from those of S. murinus. Both species carried various pathogenic bacteria, therefore both should be closely monitored in the future, especially for S. murinus. Supplementary information Supplementary information accompanies this paper at 10.1186/s12917-020-02619-6.
Collapse
Affiliation(s)
- Wen-Qiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yi-Quan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jing Ge
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Medical Office of Wuxi People's Hospital, Wu Xi, 214000, China
| | - Yan-Xia Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Jiao Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Shan Zhong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ze-Jin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yu-Han Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ming-Ji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yu-Qi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min Qiu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shu-Ting Huo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shao-Wei Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Yan Zheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Fang-Fei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Duperron S, Halary S, Gallet A, Marie B. Microbiome-Aware Ecotoxicology of Organisms: Relevance, Pitfalls, and Challenges. Front Public Health 2020; 8:407. [PMID: 32974256 PMCID: PMC7472533 DOI: 10.3389/fpubh.2020.00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
Over the last 15 years, the advent of high-throughput "omics" techniques has revealed the multiple roles and interactions occurring among hosts, their microbial partners and their environment. This microbiome revolution has radically changed our views of biology, evolution, and individuality. Sitting at the interface between a host and its environment, the microbiome is a relevant yet understudied compartment for ecotoxicology research. Various recent works confirm that the microbiome reacts to and interacts with contaminants, with consequences for hosts and ecosystems. In this paper, we thus advocate for the development of a "microbiome-aware ecotoxicology" of organisms. We emphasize its relevance and discuss important conceptual and technical pitfalls associated with study design and interpretation. We identify topics such as functionality, quantification, temporality, resilience, interactions, and prediction as major challenges and promising venues for microbiome research applied to ecotoxicology.
Collapse
Affiliation(s)
- Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France.,Institut Universitaire de France, Paris, France
| | - Sébastien Halary
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France
| | - Alison Gallet
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France
| | - Benjamin Marie
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France
| |
Collapse
|