1
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. Natural Products in Cardiovascular Diseases: The Potential of Plants from the Allioideae Subfamily (Ex-Alliaceae Family) and Their Sulphur-Containing Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:1920. [PMID: 35893624 PMCID: PMC9332240 DOI: 10.3390/plants11151920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and, together with associated risk factors such as diabetes, hypertension, and dyslipidaemia, greatly impact patients' quality of life and health care systems. This burden can be alleviated by fomenting lifestyle modifications and/or resorting to pharmacological approaches. However, due to several side effects, current therapies show low patient compliance, thus compromising their efficacy and enforcing the need to develop more amenable preventive/therapeutic strategies. In this scenario, medicinal and aromatic plants are a potential source of new effective agents. Specifically, plants from the Allioideae subfamily (formerly Alliaceae family), particularly those from the genus Allium and Tulbaghia, have been extensively used in traditional medicine for the management of several CVDs and associated risk factors, mainly due to the presence of sulphur-containing compounds. Bearing in mind this potential, the present review aims to gather information on traditional uses ascribed to these genera and provide an updated compilation of in vitro and in vivo studies validating these claims as well as clinical trials carried out in the context of CVDs. Furthermore, the effect of isolated sulphur-containing compounds is presented, and whenever possible, the relation between composition and activity and the mechanisms underlying the beneficial effects are pointed out.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-290 Coimbra, Portugal
| |
Collapse
|
2
|
Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hypertens 2020; 2020:3014693. [PMID: 32099670 PMCID: PMC7013318 DOI: 10.1155/2020/3014693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial fibrosis is characterized by excessive deposition of myocardial interstitial collagen, abnormal distribution, and excessive proliferation of fibroblasts. According to the researches in recent years, myocardial fibrosis, as the pathological basis of various cardiovascular diseases, has been proven to be a core determinant in ventricular remodeling. Pressure load is one of the causes of myocardial fibrosis. In experimental models of pressure-overload-induced myocardial fibrosis, significant increase in left ventricular parameters such as interventricular septal thickness and left ventricular posterior wall thickness and the decrease of ejection fraction are some of the manifestations of cardiac damage. These morphological and functional changes have a serious impact on the maintenance of physiological functions. Therefore, establishing a suitable myocardial fibrosis model is the basis of its pathogenesis research. This paper will discuss the methods of establishing myocardial fibrosis model and compare the advantages and disadvantages of the models in order to provide a strong basis for establishing a myocardial fibrosis model.
Collapse
|
3
|
Matsuoka H, Miyata S, Okumura N, Watanabe T, Hashimoto K, Nagahara M, Kato K, Sobue S, Takeda K, Ichihara M, Iwamoto T, Noda A. Hydrogen gas improves left ventricular hypertrophy in Dahl rat of salt-sensitive hypertension. Clin Exp Hypertens 2018; 41:307-311. [PMID: 29902079 DOI: 10.1080/10641963.2018.1481419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Hypertension is an important risk factor for death resulting from stroke, myocardial infarction, and end-stage renal failure. Hydrogen (H2) gas protects against many diseases, including ischemia-reperfusion injury and stroke. The effects of H2 on hypertension and its related left ventricular (LV) function have not been fully elucidated. The purpose of this study was to investigate the effects of H2 gas on hypertension and LV hypertrophy using echocardiography. METHODS Dahl salt-sensitive (DS) rats were randomly divided into three groups: those fed an 8% NaCl diet until 12 weeks of age (8% NaCl group), those additionally treated with 2% H2 gas (8% NaCl + 2% H2 group), and control rats maintained on a diet containing 0.3% NaCl until 12 weeks of age (0.3% NaCl group). H2 gas was supplied through a gas flowmeter and delivered by room air (2% hydrogenated room air, flow rate of 10 L/min) into a cage surrounded by an acrylic chamber. We evaluated interventricular septal wall thickness (IVST), LV posterior wall thickness (LVPWT), and LV mass using echocardiography. RESULTS IVST, LVPWT, and LV mass were significantly higher in the 8% NaCl group than the 0.3% NaCl group at 12 weeks of age, whereas they were significantly lower in the 8% NaCl + 2% H2 group than the 8% NaCl group. There was no significant difference in systolic blood pressure between the two groups. CONCLUSION Our findings suggest that chronic H2 gas inhalation may help prevent LV hypertrophy in hypertensive DS rats.
Collapse
Affiliation(s)
- Hiroki Matsuoka
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Seiko Miyata
- b Department of Psychiatry , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Nozomi Okumura
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Takuya Watanabe
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Katsunori Hashimoto
- c Department of Pathophysiological Laboratory Sciences , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Miki Nagahara
- d Center for Education in Laboratory Animal Research , Chubu University , Kasugai , Japan
| | - Kazuko Kato
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Sayaka Sobue
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Kozue Takeda
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Masatoshi Ichihara
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| | - Takashi Iwamoto
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan.,d Center for Education in Laboratory Animal Research , Chubu University , Kasugai , Japan
| | - Akiko Noda
- a Department of Biomedical Sciences , Chubu University Graduate School of Life and Health Sciences , Kasugai , Japan
| |
Collapse
|
4
|
Khater NA, Selim SA, Abd El-Baset SA, Abd El Hameed SH. Therapeutic effect of mesenchymal stem cells on experimentally induced hypertensive cardiomyopathy in adult albino rats. Ultrastruct Pathol 2016; 41:36-50. [PMID: 28029272 DOI: 10.1080/01913123.2016.1260080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypertensive heart diseases affect millions of people worldwide. We aimed to investigate the hypertensive left ventricular histological changes and assess the effectiveness of bone marrow derived mesenchymal stem cells (MSCs) therapy in the treatment of hypertensive cardiomyopathy. Adult male albino rats were assigned into two groups: group I (control), group II (Experimental) subdivided into subgroup IIa (hypertensive) and subgroup IIb (stem cell therapy). Left ventricles (LVs) were processed for light and electron microscope. Mallory's trichrome and immunostaining for caspase-3 and desmin were carried out. Hypertension caused left ventricular histological and immunohistochemical changes that had been effectively improved by MSCs therapy.
Collapse
Affiliation(s)
- Nariman A Khater
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Sally A Selim
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Samia A Abd El-Baset
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Samar H Abd El Hameed
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| |
Collapse
|
5
|
Effect of the Aged Garlic Extract on Cardiovascular Function in Metabolic Syndrome Rats. Molecules 2016; 21:molecules21111425. [PMID: 27792195 PMCID: PMC6273338 DOI: 10.3390/molecules21111425] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
The antioxidant properties of aged garlic extract (AGE) on cardiovascular functioning (CF) in metabolic syndrome (MS) remains poorly studied. Here we study the AGE effects on CF in a rat model of MS. Control rats plus saline solution (C + SS), MS rats (30% sucrose in drinking water from weaning) plus saline solution (MS + SS), control rats receiving AGE (C + AGE 125 mg/Kg/12 h) and MS rats with AGE (MS + AGE) were studied. MS + SS had increased triglycerides, systolic blood pressure, insulin, leptin, HOMA index, and advanced glycation end products. AGE returned their levels to control values (p < 0.01). Cholesterol was decreased by AGE (p = 0.05). Glutathion and GPx activity were reduced in MS + SS rats and increased with AGE (p = 0.05). Lipid peroxidation was increased in MS + SS and AGE reduced it (p = 0.001). Vascular functioning was deteriorated by MS (increased vasocontraction and reduced vasodilation) and AGE improved it (p = 0.001). Coronary vascular resistance was increased in MS rats and AGE decreased it (p = 0.001). Cardiac performance was not modified by MS but AGE increased it. NO measured in the perfusate liquid from the heart and serum citrulline, nitrites/nitrates were decreased in MS and AGE increased them (p < 0.01). In conclusion, AGE reduces MS-induced cardiovascular risk, through its anti-oxidant properties.
Collapse
|
6
|
John ASP, Ankem MK, Damodaran C. Oxidative Stress: A Promising Target for Chemoprevention. ACTA ACUST UNITED AC 2016; 2:73-81. [PMID: 27088073 DOI: 10.1007/s40495-016-0052-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer is a leading cause of death worldwide, and treating advanced stages of cancer remains clinically challenging. Epidemiological studies have shown that oxidants and free radicals induced DNA damage is one of the predominant causative factors for cancer pathogenesis. Hence, oxidants are attractive targets for chemoprevention as well as therapy. Dietary agents are known to exert an anti-oxidant property which is one of the most efficient preventive strategy in cancer progression. In this article, we highlight dietary agents can potentially target oxidative stress, in turn delaying, preventing, or treating cancer development. Some of these agents are currently in use in basic research, while some have been launched successfully into clinical trials.
Collapse
Affiliation(s)
| | - Murali K Ankem
- Department of Urology, University of Louisville, KY 40202
| | | |
Collapse
|
7
|
Wang L, Zheng L, Luo R, Zhao X, Han Z, Wang Y, Yang Y. A1H NMR-based metabonomic investigation of time-dependent metabolic trajectories in a high salt-induced hypertension rat model. RSC Adv 2015. [DOI: 10.1039/c4ra07215d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The time-dependent metabolic profiles in urine, plasma and feces of salt-fed hypertensive rats were systematically investigated using NMR-based metabonomics.
Collapse
Affiliation(s)
- Linlin Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Lingyun Zheng
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Ren Luo
- Department of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou
- P. R. China
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou
- P. R. China
| | - Zhihui Han
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Yaling Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Yongxia Yang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|