1
|
Montazerian M, Gonçalves GVS, Barreto MEV, Lima EPN, Cerqueira GRC, Sousa JA, Malek Khachatourian A, Souza MKS, Silva SML, Fook MVL, Baino F. Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7477. [PMID: 36363085 PMCID: PMC9656675 DOI: 10.3390/ma15217477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.
Collapse
Affiliation(s)
- Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Geovanna V. S. Gonçalves
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Eunice P. N. Lima
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Glauber R. C. Cerqueira
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Julyana A. Sousa
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adrine Malek Khachatourian
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11155-1639, Iran
| | - Mairly K. S. Souza
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Suédina M. L. Silva
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
2
|
Motwani N, Ikhar A, Nikhade P, Chandak M, Rathi S, Dugar M, Rajnekar R. Premixed bioceramics: A novel pulp capping agent. J Conserv Dent 2021; 24:124-129. [PMID: 34759576 PMCID: PMC8562841 DOI: 10.4103/jcd.jcd_202_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/28/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
The main aim of restorative dentistry is to protect the vitality of the Pulp tissue. The pin point carious expoure and iatrogenic errors warrant the need for various pulp capping procedures like Indirect Pulp Capping and Direct Pulp Capping. Pulp Capping is dressing of the dental pulp exposed due to mechanical procedure, carious lesion or traumatic injury to preserve its vitality and function. There has been constant evolution and research on materials used to cap the Pulp tissue. The different kind of chemical and biological materials has been used with varying degree of success. The prognosis based on the pulp capping material has dramatically improved with the introduction of bioactive cement. Though MTA and biodentine have shown a high success rate, their properties can be adversely affected with error in powder/liquid ratio and may present with difficulty in the handling characteristic. Premixed bioceramics have been introduced in the market and present with desirable properties as a pulp capping agent. Owing to good handling characteristics, biocompatibility, odontogenic property, and antibacterial action it is a potent pulp capping agent for clinical application. This review is aimed to discuss the introduction of premixed bioceramics, forms of premixed bioceramics available, and its physical, chemical, and biocompatible properties.
Collapse
Affiliation(s)
- Nidhi Motwani
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Anuja Ikhar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Pradnya Nikhade
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Manoj Chandak
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Saurabh Rathi
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Meghna Dugar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Rutuja Rajnekar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| |
Collapse
|