1
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
2
|
Dev A, Vachher M, Prasad CP. β-catenin inhibitors in cancer therapeutics: intricacies and way forward. Bioengineered 2023; 14:2251696. [PMID: 37655825 PMCID: PMC10478749 DOI: 10.1080/21655979.2023.2251696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
β-catenin is an evolutionary conserved, quintessential, multifaceted protein that plays vital roles in cellular homeostasis, embryonic development, organogenesis, stem cell maintenance, cell proliferation, migration, differentiation, apoptosis, and pathogenesis of various human diseases including cancer. β-catenin manifests both signaling and adhesive features. It acts as a pivotal player in intracellular signaling as a component of versatile WNT signaling cascade involved in embryonic development, homeostasis as well as in carcinogenesis. It is also involved in Ca2+ dependent cell adhesion via interaction with E-cadherin at the adherens junctions. Aberrant β-catenin expression and its nuclear accumulation promote the transcription of various oncogenes including c-Myc and cyclinD1, thereby contributing to tumor initiation, development, and progression. β-catenin's expression is closely regulated at various levels including its stability, sub-cellular localization, as well as transcriptional activity. Understanding the molecular mechanisms of regulation of β-catenin and its atypical expression will provide researchers not only the novel insights into the pathogenesis and progression of cancer but also will help in deciphering new therapeutic avenues. In the present review, we have summarized the dual functions of β-catenin, its role in signaling, associated mutations as well as its role in carcinogenesis and tumor progression of various cancers. Additionally, we have discussed the challenges associated with targeting β-catenin molecule with the presently available drugs and suggested the possible way forward in designing new therapeutic alternatives against this oncogene.
Collapse
Affiliation(s)
- Arundhathi Dev
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Dawoud MM, Salah M, Mohamed ASED. Clinical significance of immunohistochemical expression of DDR1 and β-catenin in colorectal carcinoma. World J Surg Oncol 2023; 21:168. [PMID: 37271822 DOI: 10.1186/s12957-023-03041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Despite recent advances in therapy modalities of colorectal cancer (CRC), it is still the third cause of cancer-related deaths worldwide. Thus, the search for new target therapies became mandatory. DDR1 is a collagen receptor that has a suggested role in cellular proliferation, tumor invasion, and metastasis. MATERIAL AND METHODS Forty-eight cases of CRC, 20 of CR adenoma, and 8 cases of non-tumoral colonic tissue were subjected to immunohistochemistry by DDR1 and β-catenin antibodies. Results were compared among the different studied groups and correlated with clinicopathologic data and available survival data. Also, the expression of both proteins was compared versus each other. Results were compared among the 3 studied groups and correlated with clinicopathologic and survival data. RESULTS It revealed a stepwise increase of DDR1 expression among studied groups toward carcinoma (P = 0.006). DDR1 expression showed a direct association with stage D in the modified Dukes' staging system (P = 0.013), higher-grade histologic types (P = 0.008), and lymph node invasion (P = 0.028) but inverse correlation with the presence of intratumoral inflammatory response (TIR) (P = 0.001). The shortest OS was associated with strong intensity of DDR1 (P = 0.012). The DDR1 and β-catenin expressions were significantly correlated (P = 0.028), and the combined expression of both was correlated with TNM staging (P = 0.017). CONCLUSION DDR1 overexpression is a frequent feature in CRC and CR adenoma. DDR1 is a poor prognostic factor and a suppressor of the TIR. DDR1 and β-catenin seem to have a synergistic action.
Collapse
Affiliation(s)
- Marwa Mohammed Dawoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Marwa Salah
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | | |
Collapse
|
4
|
Tunuguntla A, Suresh T, PN S. Association Between the Immunohistochemistry Expression of E-cadherin, Beta-Catenin, and CD44 in Colorectal Adenocarcinoma. Cureus 2023; 15:e35686. [PMID: 37012965 PMCID: PMC10066707 DOI: 10.7759/cureus.35686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Background Colorectal cancer is a leading cause of cancer-related deaths worldwide, and epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. In EMT, there is downregulation of E-cadherin, an intracellular adhesion molecule, as well as mutations in beta-catenin genes. On immunohistochemistry (IHC), the expression of CD44 portrays stem cell differentiation, which, in turn, is strongly associated with EMT. Thus, newer targeted therapies can be advised based on the expression of EMT and stem cell differentiation. Aims and objectives To determine the IHC expression of E-cadherin, beta-catenin, and CD44 in colorectal adenocarcinoma and find the association of the IHC expression of E-cadherin, beta-catenin, and CD44 with the histopathological grade, stage, lymph node metastasis, and lymphovascular invasion of colorectal adenocarcinoma. Materials and methods Fifty histologically proven cases of colorectal adenocarcinoma from 2016 to 2021 were included in this study, and clinicopathological data including age, gender, grading, TNM (tumour, node, and metastasis) staging, and lymph node metastasis were collected and hematoxylin and eosin slides were reviewed. IHC staining for E-cadherin, beta-catenin, and CD44 was done for all cases using the peroxidase and anti-peroxidase method, and the results were analysed. Results Peak incidence occurred in the 61-70 years age group (36%), and the most common site of the tumour was the rectal area (48%). The majority of the cases were in TNM stage II (37.3%), and a low expression of E-cadherin was found to be associated with higher T stage (p = 0.03), TNM staging (p = 0.04), as well as the presence of lymph node metastasis (p = 0.006). High beta-catenin expression was observed to have a significant correlation with a higher T stage (p = 0.006) and TNM staging (p = 0.005), while high CD44 expression was found to be associated with lymph node metastasis (p = 0.01). Altered expression of EMT-related proteins (E-cadherin and beta-catenin) showed a significant correlation with higher T stage (p = 0.03), TNM staging (p = 0.016), and lymph node metastasis (0.04). Conclusions EMT and cancer stem cell IHC markers are biomarkers for aggressive tumour growth and lymph node metastasis. Hence, EMT markers (E-cadherin and beta-catenin) and cancer stem cell markers (CD44) can be used as prognostic markers.
Collapse
|
5
|
Pei XM, Wong HT, Ng SSM, Leung WW, Wong YN, Tsang HF, Chan AKC, Wong YKE, Yu ACS, Yim AKY, Cho WCS, Chan JKC, Wong KF, Luk JM, Tai WCS, Wong SCC. The diagnostic significance of CDH17-positive circulating tumor cells in patients with colorectal cancer. Expert Rev Mol Diagn 2023; 23:171-179. [PMID: 36744385 DOI: 10.1080/14737159.2023.2176223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer deaths in Hong Kong. We tested the hypothesis that circulating tumor cell (CTC) analysis by ARB101 antibody could be used as a tool for CRC detection, progression, and therapy response. RESEARCH METHODS ARB101 antibody was used for investigation of CDH17 expression in formalin-fixed, paraffin-embedded (FFPE) tissue sections and circulating tumor cells (CTCs) of CRC patients. RESULTS Using ARB101, highest sensitivity was observed in 98/100 (98%) colorectal cancer tissue compared to 72/100 gastric cancer (72%) and 27/32 pancreatic cancer (84%). Immunoreactivity of CDH17 was significantly higher in distant metastatic (tumor-node-metastasis [TNM] stage IV) than non-distant metastatic (TNM stage I to III) CRC. ARB101 antibody also manifested the higher sensitivity than c-erbB2 (8%) and epidermal growth factor receptor (EGFR)-targeting antibodies (37%) with the significance (p < 0.0001). ARB101 positive CTCs were detected in 64/83 (77%) TNM stage I to IV CRC patients. Furthermore, ARB101 positive CTCs detected in TNM stage I to III CRC patients before and after surgical operation are statistically significant (p < 0.0001). CONCLUSIONS CTC detection by ARB101 antibody could serve as a potential non-invasive approach for CRC detection, progression, and monitoring of treatment response.
Collapse
Affiliation(s)
- Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Macao, Macau Special Administrative Region, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing Wa Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Yee Ni Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, China
| | - Amanda Kit Ching Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, Hong Kong Special Administrative Region, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, China
| | - Allen Chi Shing Yu
- Department of Research and Develpment, Codex Genetics Limited, Hong Kong, Hong Kong Special Administrative Region, China
| | - Aldrin Kay Yuen Yim
- Department of Research and Develpment, Codex Genetics Limited, Hong Kong, Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - John Kwok Cheung Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwong Fai Wong
- Department of Research and Develpment Arbele Limited, Hong Kong, Hong Kong Special Administrative Region, China
| | - John M Luk
- Department of Research and Develpment Arbele Limited, Hong Kong, Hong Kong Special Administrative Region, China
| | - William Chi Shing Tai
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Ferreira BI, Santos B, Link W, De Sousa-Coelho AL. Tribbles Pseudokinases in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112825. [PMID: 34198908 PMCID: PMC8201230 DOI: 10.3390/cancers13112825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles' role in colorectal cancer.
Collapse
Affiliation(s)
- Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Serviço de Anatomia Patológica, Centro Hospital Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (W.L.); (A.L.D.S.-C.)
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (W.L.); (A.L.D.S.-C.)
| |
Collapse
|