1
|
Panozzo MP, Antico A, Bizzaro N. Monitoring the follow-up of autoimmune chronic atrophic gastritis using parietal cell antibodies and markers of gastric function. J Transl Autoimmun 2025; 10:100273. [PMID: 39917315 PMCID: PMC11800024 DOI: 10.1016/j.jtauto.2025.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Increased interest in the pathogenesis and the evolution of autoimmune chronic atrophic gastritis (A-CAG) has led to the search for serological markers that can be used to detect changes in the gastric mucosa at an early stage and to monitor the course of the disease. Parietal cell autoantibodies have been proposed as suitable immunological markers of atrophic damage, as they can be detected in the serum when symptoms of gastritis are not yet present. However, the utility of measuring only the level of parietal cell autoantibodies in the follow-up of A-CAG does not appear to suffice. Recent evidence has suggested that, in monitoring A-CAG, parietal cell antibodies should be associated with an evaluation of gastric function through biochemical and hormonal tests, such as pepsinogens and gastrin 17. This integrated approach will allow for the more effective real-time monitoring of the state of the gastric mucosa. As A-CAG is a progressive disorder associated with an increased risk of gastric cancer and neuroendocrine tumors, the precise follow-up of patients with gastric atrophy needs to be better defined. Further longitudinal studies in large cohorts must be performed with long-term follow-up.
Collapse
Affiliation(s)
| | - Antonio Antico
- Department of Laboratory Medicine, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Nicola Bizzaro
- Laboratory of Clinical Pathology, Azienda Sanitaria Universitaria Integrata, Udine, Italy
| |
Collapse
|
2
|
Zhang Z, Chen S, Li S, Zheng Y, Mai L, Zhang X. Association of Helicobacter pylori related chronic atrophic gastritis and gastric cancer risk: a literature review. Front Med (Lausanne) 2025; 12:1504749. [PMID: 40051725 PMCID: PMC11882515 DOI: 10.3389/fmed.2025.1504749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Chronic atrophic gastritis (CAG) is considered to be closely related to Helicobacter pylori (H. pylori) infection and characterized by the atrophy and/or intestinal metaplasia (IM) of the gastric mucosa in pathology. CAG is often regarded as the precancerous lesion of gastric cancer and H. pylori infection stimulates the development of atrophy and IM and the progression of gastric cancer through the persistent effect acting on the gastric mucosa, including releasing inflammatory factors such as Interleukin-8(IL-8). From the molecular biology perspective, growing evidence shows that H. pylori probably induce the expression of NF-κB, miR-204, miR-27a, hnRNPA2B1, and JARID1B, which play crucial roles in the progression of CAG into gastric cancer. In addition, H. pylori can increase Epstein-Barr virus (EBV) infection, and the co-infection will jointly increase gastric cancer risk. Furthermore, H. pylori induces cellular senescence and promotes atrophy progression and finally increases the gastric cancer risk. This review aims to explore the carcinogenic mechanisms of H. pylori related CAG in order to provide theoretical foundations for the pathogenesis mechanism and early detection and prevention of gastric cancer.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Digestive Endoscopy Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Sitong Chen
- Southern Medical University, Guangzhou, Guangdong, China
| | - Shudan Li
- Southern Medical University, Guangzhou, Guangdong, China
| | - Yadan Zheng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Lifei Mai
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoguang Zhang
- Department of Digestive Endoscopy Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Chen L, Wang X, Li J, Zhang L, Wu W, Wei S, Zou W, Zhao Y. Elucidation of the mechanism of berberine against gastric mucosa injury in a rat model with chronic atrophic gastritis based on a combined strategy of multi-omics and molecular biology. Front Pharmacol 2025; 15:1499753. [PMID: 39834822 PMCID: PMC11743660 DOI: 10.3389/fphar.2024.1499753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background Berberine (BBR) is widely used to treat gastrointestinal diseases. However, the pharmacological mechanism of action of BBR in anti-chronic atrophic gastritis (CAG) remains unclear. This study aimed to investigate the mechanism of action of BBR in CAG by integration of molecular biology and multi-omics studies strategy. Methods The CAG model was established by alternating drinking water of 0.1% ammonia and 20 mmol/L sodium deoxycholate, accompanied by an irregular diet. Serum biochemical indices including PGI, PGII, GAS-17, IL-6, IL-1β, and TNF-α were analyzed. HE and AB-PAS staining were employed to assess pathological damage in gastric tissue. The underlying molecular mechanism of BBR in CAG treatment was explored via the integration of network pharmacology, transcriptomics, widely targeted metabolomics and intestinal flora analysis. Finally, relevant key targets and pathway were verified. Results The results showed that BBR exerted therapeutic effects in improving CAG via alleviating inflammation response, maintaining the gastric mucosal barrier's integrity and repairing gastric mucosal tissues. Network pharmacology showed that the treatment of CAG by BBR mainly involved in inflammatory response, apoptosis, angiogenesis and metabolic processes. Furthermore, 234 different expression genes were identified in the gastric tissue transcriptome, which were mainly involved in biological processes such as cell adhesion, angiogenesis, apoptosis, cell migration and lipids metabolism by regulating the MAPK signaling pathway. Metabolomics results showed that 125 differential metabolites were also identified, while the pathways were mainly involved in D-glutamine and D-glutamate metabolism, and tyrosine metabolism, etc. Integrating transcriptomics and metabolomics analyses indicated that BBR directly regulated Carnitine C3:0, LPC (0:0/20:3), L-Glutamic Acid and FFA (15:0) by acting on SLC25A20, PNLIPRP1, PLA2G4C, GSR, GFPT2, GCLM, CTPS1, ACSL1, ACOT4 and ACOT2. 16S rRNA sequencing revealed that BBR could restore the balance of gut microbiota dysbiosis by significantly regulating the relative abundance of unclassified_Muribaculaceae and Lactobacillus_johnsonii. Conclusion This study demonstrated that BBR alleviates CAG through the regulation of the MAPK signaling pathway, metabolic disorders and gut microbiota dysbiosis, thereby revealing the complex mechanism of BBR in relation to alleviating CAG from multiple levels and perspectives.
Collapse
Affiliation(s)
- Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianyu Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Zhang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenbin Wu
- Healthcare Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Shizhang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Rui Q, Li C, Rui Y, Zhang C, Xia C, Wang Q, Liu Y, Wang P. Human umbilical mesenchymal stem cells ameliorate atrophic gastritis in aging mice by participating in mitochondrial autophagy through Ndufs8 signaling. Stem Cell Res Ther 2024; 15:491. [PMID: 39707499 DOI: 10.1186/s13287-024-04094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a chronic disease of the gastric mucosa characterized by a reduction or an absolute disappearance of the original gastric glands, possibly replaced by pseudopyloric fibrosis, intestinal metaplasia, or fibrosis. CAG develops progressively into intestinal epithelial metaplasia, dysplasia, and ultimately, gastric cancer. Epidemiological statistics have revealed a positive correlation between the incidence of CAG and age. Mesenchymal stem cells (MSCs) are a type of adult stem cells derived from mesoderm, with strong tissue repair capabilities. Therefore, the restoration of the gastric mucosa may serve as an efficacious strategy to ameliorate CAG and avert gastric cancer. However, the mechanisms by which MSCs inhibit the relentless progression of aging atrophic gastritis remain to be elucidated. This study endeavored to assess a novel approach utilizing MSCs to treat CAG and forestall carcinogenics. METHODS In this study, we selected mice with atrophic gastritis from naturally aging mice and administered human umbilical cord-derived mesenchymal stem cells (hUMSCs) via tail vein injection to evaluate the therapeutic effects of hUMSCs on age-related chronic atrophic gastritis. Initially, we employed methods such as ELISA, immunohistochemical analysis, and TUNEL assays to detect changes in the mice post-hUMSC injection. Proteomic and bioinformatics analyses were conducted to identify differentially expressed proteins, focusing on NADH: ubiquinone oxidoreductase core subunit S8 (Ndufs8). Co-culturing hUMSCs with Ndufs8 knockout gastric mucosal epithelial cells (GMECs), we utilized flow cytometry, Western blotting, real-time quantitative PCR, and immunofluorescence to investigate the mechanisms of action of hUMSCs. RESULTS We observed that hUMSCs are capable of migrating to and repairing damaged gastric mucosa. Initially, hUMSCs significantly enhanced the secretion of gastric proteins PG-1 and G17, while concurrently reducing inflammatory cytokines. Furthermore, hUMSCs mitigated gastric fibrosis and apoptosis in mucosal cells. Proteomic and bioinformatic analyses revealed alterations in the protein network involved in mitochondrial autophagy, with Ndufs8 playing a pivotal role. Upon knocking out Ndufs8 in GMECs, we noted mitochondrial damage and reduced autophagy, leading to an aged phenotype in GMECs. Co-culturing Ndufs8-knockout GMECs with hUMSCs demonstrated that hUMSCs could ameliorate mitochondrial dysfunction and restore the cell cycle in GMECs.
Collapse
Affiliation(s)
- Qiang Rui
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Chuyu Li
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yiqi Rui
- Department of General Surgery,Geriatric Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Chuanzhuo Zhang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Cunbing Xia
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing Wang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yuanyuan Liu
- School of Medicine, Southeast University, Nanjing, 210096, China
| | - Peng Wang
- Department of General Surgery,Geriatric Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
5
|
Matsuoka T, Yashiro M. Novel biomarkers for early detection of gastric cancer. World J Gastroenterol 2023; 29:2515-2533. [PMID: 37213407 PMCID: PMC10198055 DOI: 10.3748/wjg.v29.i17.2515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related death worldwide. Less than half of GC cases are diagnosed at an advanced stage due to its lack of early symptoms. GC is a heterogeneous disease associated with a number of genetic and somatic mutations. Early detection and effective monitoring of tumor progression are essential for reducing GC disease burden and mortality. The current widespread use of semi-invasive endoscopic methods and radiologic approaches has increased the number of treatable cancers: However, these approaches are invasive, costly, and time-consuming. Thus, novel molecular noninvasive tests that detect GC alterations seem to be more sensitive and specific compared to the current methods. Recent technological advances have enabled the detection of blood-based biomarkers that could be used as diagnostic indicators and for monitoring postsurgical minimal residual disease. These biomarkers include circulating DNA, RNA, extracellular vesicles, and proteins, and their clinical applications are currently being investigated. The identification of ideal diagnostic markers for GC that have high sensitivity and specificity would improve survival rates and contribute to the advancement of precision medicine. This review provides an overview of current topics regarding the novel, recently developed diagnostic markers for GC.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|
6
|
Kotelevets SM, Chekh SA, Chukov SZ. Cancer risk stratification system and classification of gastritis: Perspectives. World J Meta-Anal 2023; 11:18-28. [DOI: 10.13105/wjma.v11.i1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Kyoto global consensus reports that the current ICD-10 classification for gastritis is obsolete. The Kyoto classification of gastritis states that severe mucosal atrophy has a high risk of gastric cancer, while mild to moderate atrophy has a low risk. The updated Kimura-Takemoto classification of atrophic gastritis considers five histological types of multifocal corpus atrophic gastritis according to stages C2 to O3. This method of morphological diagnosis of atrophic gastritis increases sensitivity by 2.4 times for severe atrophy compared to the updated Sydney system. This advantage should be considered when stratifying the high risk of gastric cancer. The updated Kimura-Takemoto classification of atrophic gastritis should be used as a reference standard (gold standard) in studies of morpho-functional relationships to identify serological markers of atrophic gastritis with evidence-based effectiveness. The use of artificial intelligence in the serological screening of atrophic gastritis makes it possible to screen a large number of the population. During serological screening of atrophic gastritis and risk stratification of gastric cancer, it is advisable to use the Kyoto classification of gastritis with updated Kimura-Takemoto classification of atrophic gastritis.
Collapse
Affiliation(s)
- Sergey M Kotelevets
- Department of Therapy, North Caucasus State Academy, Cherkessk 369000, Karachay-Cherkess Republic, Russia
| | - Sergey A Chekh
- Department of Mathematics, North Caucasus State Academy, Cherkessk 369000, Karachay-Cherkess Republic, Russia
| | - Sergey Z Chukov
- Department of Pathological Anatomy, Stavropol State Medical University, Stavropol 355017, Stavropol region, Russia
| |
Collapse
|
7
|
Yu XT, Chen M, Guo J, Zhang J, Zeng T. Noninvasive detection and interpretation of gastrointestinal diseases by collaborative serum metabolite and magnetically controlled capsule endoscopy. Comput Struct Biotechnol J 2022; 20:5524-5534. [PMID: 36249561 PMCID: PMC9550535 DOI: 10.1016/j.csbj.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal diseases are complex diseases that occur in the gastrointestinal tract. Common gastrointestinal diseases include chronic gastritis, peptic ulcers, inflammatory bowel disease, and gastrointestinal tumors. These diseases may manifest a long course, difficult treatment, and repeated attacks. Gastroscopy and mucosal biopsy are the gold standard methods for diagnosing gastric and duodenal diseases, but they are invasive procedures and carry risks due to the necessity of sedation and anesthesia. Recently, several new approaches have been developed, including serological examination and magnetically controlled capsule endoscopy (MGCE). However, serological markers lack lesion information, while MGCE images lack molecular information. This study proposes combining these two technologies in a collaborative noninvasive diagnostic scheme as an alternative to the standard procedures. We introduce an interpretable framework for the clinical diagnosis of gastrointestinal diseases. Based on collected blood samples and MGCE records of patients with gastrointestinal diseases and comparisons with normal individuals, we selected serum metabolite signatures by bioinformatic analysis, captured image embedding signatures by convolutional neural networks, and inferred the location-specific associations between these signatures. Our study successfully identified five key metabolite signatures with functional relevance to gastrointestinal disease. The combined signatures achieved discrimination AUC of 0.88. Meanwhile, the image embedding signatures showed different levels of validation and testing accuracy ranging from 0.7 to 0.9 according to different locations in the gastrointestinal tract as explained by their specific associations with metabolite signatures. Overall, our work provides a new collaborative noninvasive identification pipeline and candidate metabolite biomarkers for image auxiliary diagnosis. This method should be valuable for the noninvasive detection and interpretation of gastrointestinal and other complex diseases.
Collapse
Affiliation(s)
- Xiang-Tian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,Corresponding authors at: Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai, China (X.-T. Yu); Guangzhou Laboratory, Guangzhou, China (T. Zeng).
| | - Ming Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Zeng
- Guangzhou Laboratory, Guangzhou, China,Corresponding authors at: Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai, China (X.-T. Yu); Guangzhou Laboratory, Guangzhou, China (T. Zeng).
| |
Collapse
|
8
|
Therapeutic Effect of Curcumol on Chronic Atrophic Gastritis (CAG) and Gastric Cancer Is Achieved by Downregulating SDF-1α/CXCR4/VEGF Expression. JOURNAL OF ONCOLOGY 2022; 2022:3919053. [PMID: 36131788 PMCID: PMC9484916 DOI: 10.1155/2022/3919053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
CAG is an essential procession of the transformation from gastritis into gastric cancer. A series of timely moves of diagnosis, treatment, and monitoring towards CAG to anticipate the potential population at risk of gastric cancer is an effective means to prevent gastric cancer occurrence. The main active monomer in Fuzheng Huowei Decoction is Curcumol, which is an indispensable ingredient in the treatment to CAG and gastric cancer. In this study, the CAG model, in vitro cultured gastric cancer cells, and participating nude mice were treated with Curcumol, and alterations in SDF-1α/CXCR4/VEGF expression were estimated using the assays of immunohistochemistry and Western blot. MTT, flow cytometry, transwell, HE staining, and tumor volume determination were applied for the verification of the regulatory effects of Curcumol on CAG and gastric cancer cells. The results showed that the expressions of VEGF, SDF-1α, CXCR4, and CD34 decreased in our CAG model with Curcumol treatment. Curcumol is in procession of an inhibitory effect toward the activity, migration, and invasion of gastric cancer cells, and it would also result in gastric cancer cells' apoptosis. We subsequently added SDF-1α overexpressing lentivirus to the Curcumol-treated group and found that the expressions of SDF-1α, CXCR4, and VEGF protein increased, and the inhibitory effect of Curcumol on gastric cancer cells was withdrawn. Our nude mouse experiment showed that Curcumol + SDF-1α group ended up with the largest tumor volume, while Fuzheng Huowei + NC group was with the smallest tumor volume. In conclusion, Curcumol is able to effectively protect the gastric tissue and suppress gastric cancer cells' viability. Curcumol functions as a therapeutic factor in chronic atrophic gastritis and gastric cancer by downregulating SDF-1α/CXCR4/VEGF expression.
Collapse
|
9
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
10
|
Li X, Feng M, Yuan G. Clinical efficacy of Weisu granule combined with Weifuchun tablet in the treatment of chronic atrophic gastritis and its effect on serum G-17, PG I and PG II levels. Am J Transl Res 2022; 14:275-284. [PMID: 35173844 PMCID: PMC8829644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The aim of this prospective study was to explore the clinical efficacy of Weisu granules combined with Weifuchun tablets in the treatment of chronic atrophic gastritis and its effect on serum gastrin-17 (G-17), pepsinogen I (PG I), and II (PG II) levels. METHODS Totally, 120 patients with chronic atrophic gastritis admitted to our hospital from February 2019 to February 2020 were enrolled and randomized into a control group (n=60) treated with Weifuchun tablets, and a experimental group given Weisu granules. Serum G-17, PG I, and PG II levels, inflammatory factor levels, TCM syndrome scores, gastric mucosa pathological scores, and clinical efficacy were compared between the two groups. Gastric tissue changes were observed using gastroscopy and HE staining. RESULTS After treatment, the levels of serum G-17, PG I, and PG II of the experimental group were significantly better than those of the control group (P<0.001). The levels of inflammatory factors, traditional Chinese medicine (TCM) syndrome scores, and gastric mucosal pathology scores of the experimental group were significantly lower than those of the control group (P<0.001). The overall response rate of the experimental group was significantly higher than that of the control group (P<0.05). The experimental group showed a lower HP positive result and a higher HP negative conversion ratio than the control group (all P<0.05). HE staining results revealed that after treatment, the number of glands was basically restored to the level of normal gastric mucosa, and the improvement of inflammatory cell infiltration in the experimental group was significantly better than that in the control group. CONCLUSION Weisu granule combined with Weifuchun tablets can ameliorate serum G-17, PG I, and PG II levels in patients with chronic atrophic gastritis, relieve inflammatory responses and clinical symptoms, and improve the treatment effect, which is worth promoting in clinical practice. CLINICAL TRIAL REGISTRATION Chinese Registry of Clinical Trials. TRIAL REGISTRATION NUMBER ChiCTR200002548416. Trial URL: http://www.chictr.org.cn/showproj.aspx?proj=26516901.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Gastroenterology, Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine HospitalNanjing 215600, Jiangsu, China
| | - Minxiao Feng
- Department of Gastroenterology, Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine HospitalNanjing 215600, Jiangsu, China
| | - Gang Yuan
- Department of Geriatrics, Luyuan HospitalZhangjiagang 215600, Jiangsu, China
| |
Collapse
|
11
|
pCLE highlights distinctive vascular patterns in early gastric cancer and in gastric diseases with high risk of malignant complications. Sci Rep 2021; 11:21053. [PMID: 34702885 PMCID: PMC8548395 DOI: 10.1038/s41598-021-00550-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Endoscopy is widely used to detect and diagnose precancerous lesions and gastric cancer (GC). The probe-based Confocal Laser Endomicroscopy (pCLE) is an endoscopic technique suitable for subcellular resolution and for microvasculature analyses. The aim of this study was to use pCLE to identify specific vascular patterns in high-risk and early stage GC. Mucosal architecture, vessel tortuosity, enlargements and leakage were assessed in patients with autoimmune gastritis and early gastric cancer (EGC). We were able to stratify gastritis patients by identifying distinct vascular profiles: gastritis was usually associated with increased vascularization characterized by a high number of tortuous vessels, which were also found in atrophic autoimmune disease. Leaky and tortuous vessels, distributed in a spatially irregular network, characterized the atrophic metaplastic mucosa. The mucosal vasculature of EGC patients displayed tortuous vessels, but unlike what detected in atrophic gastritis, they appeared patchy, as is in neoplastic gastric tissue. Very importantly, we detected vascular changes even in areas without lesions, supporting the contention that vascular alterations may provide a favorable microenvironment for carcinogenesis. This report confirms that pCLE is a valid endoscopic approach to improve the definition of patients with malignant lesions or at increased risk for GC by assessing vascular changes.
Collapse
|