1
|
Averin AS, Storey KB, Nenov MN. The effects of nickel chloride on papillary muscle contractility under normothermic and hypothermic conditions: Comparison of active and hibernating ground squirrels (Urocitellus undulatus) with Wistar rats. J Therm Biol 2024; 119:103785. [PMID: 38320933 DOI: 10.1016/j.jtherbio.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Extracellular Ca2+ plays a pivotal role in the regulation of cardiac contractility under normal and extreme conditions. Here, by using nickel chloride (NiCl2), a non-specific blocker of extracellular Ca2+ influx, we studied the input of extracellular Ca2+ on the regulation of papillary muscle (PM) contractility under normal and hypothermic conditions in ground squirrels (GS), and rats. By measuring isometric force of contraction, we studied how NiCl2 affects force-frequency relationship and the rest effect in PM of these species at 30 °C and 10 °C. We found that at 30 °C 1.5 mM NiCl2 significantly reduced force of contraction across entire frequency range in active GS and rats, whereas in hibernating GS force of contraction was reduced at low and high frequency range. Additionally, NiCl2 evoked spontaneous contractility in rats but not GS PM. The rest effect was significantly reduced by NiCl2 for active GS and rats but not hibernating GS. At 10 °C, NiCl2 fully reduced contractility in active GS and, to a lesser extent, in rats, whereas in hibernating GS it was significant only at 0.3 Hz. The rest effect was significantly reduced by NiCl2 in both active and hibernating GS, whereas it was unmasked in rats that had high contractility under hypothermic conditions in control. Our results show a significant contribution of extracellular Ca2+ to myocardial contractility in GS not only in active but also in hibernating states, especially under hypothermic conditions, whereas limitation of extracellular Ca2+ influx in rats under hypothermia can play protective role for myocardial contractility.
Collapse
Affiliation(s)
- Alexey S Averin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Miroslav N Nenov
- Department of Psychology and Neuroscience, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Averin AS, Zakharova NM, Ignatiev DA. Effects of Nickel Chloride on Myocardial Contractile Properties in Active Ground Squirrels with Different Responses to Hypothermia. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Liu Y, Gong X, Wang J, Wang Y, Zhang Y, Li T, Yan J, Zhou M, Zhang B. Investigation of nickel sulfate-induced cytotoxicity and underlying toxicological mechanisms in human umbilical vein endothelial cells through oxidative stress, inflammation, apoptosis, and MAPK signaling pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:2058-2071. [PMID: 35499276 DOI: 10.1002/tox.23550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Growing evidence indicates that nickle and its compounds have adverse effects on the cardiovascular system. In this study, the cytotoxic insults caused by nickel sulfate (NiSO4 ) in human umbilical vein endothelial cells (HUVECs) were explored by examining cell viability, oxidative stress, inflammation, apoptosis, and MAPK signaling pathway activity. Cultured HUVECs were treated with varying concentrations of NiSO4 (0, 62.5, 250, and 1000 μM) for 24 h. Subsequently, markers of oxidative stress, inflammation, apoptosis, and MAPK signaling pathways were analyzed using biochemical assays, real-time quantitative polymerase chain reaction, and western blot. Rates of apoptosis were evaluated using flow cytometry. The results showed that NiSO4 exerted dose- and time-dependent inhibitory effects on cell growth. It induced oxidative stress and lipid peroxidation by increasing the generation of reactive oxygen species, the oxidized glutathione to reduced glutathione ratio (GSSG/GSH ratio), and malondialdehyde levels. Further, it inhibited superoxide dismutase activity in HUVECs. Flow cytometry analysis results revealed that NiSO4 (62.5-1000 μM) could induce apoptosis in HUVECs. The protein and gene expressions of cleaved Caspase 3 and Bax were elevated, and those of Bcl-2 and Bcl-XL were reduced after NiSO4 treatment. Additionally, NiSO4 triggered inflammation in HUVECs, increasing the protein and mRNA levels of IL-6 and TNF-α and reducing those of TGF-β. Furthermore, western blot findings revealed that NiSO4 could activate MAPK signaling pathways, upregulating p38, JNK, and ERK1/2 in HUVECs by increasing the levels of p-P38,p-JNK, and p-ERK1/2 in a dose-dependent manner. MAPK pathway inhibitors (10 μM SB203580 and 10 μM SP600125) could attenuate the NiSO4 -induced increase in apoptosis and inflammation in HUVECs. They could also attenuate the dysregulation of inflammatory factors and related proteins caused by high-dose NiSO4 exposure. Interestingly, while the MEK inhibitor U0126 (10 μM) enhanced NiSO4 -induced apoptosis in HUVECs, it reduced cell inflammation. Taken together, these experimental results suggest that NiSO4 can inhibit cell growth, induce oxidative stress, and trigger subsequent inflammatory responses and apoptosis in HUVECs. These effects may be mediated by the P38 and JNK MAPK stress response pathways.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xia Gong
- Department of Geratology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Wang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yongxiang Wang
- Department of Geratology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Tao Li
- Department of Geratology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Yan
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Afrin F, Basir SF, Khan LA. Elucidation of Mechanisms in Cu (II) Caused Hypercontraction of Rat Tracheal Rings. Biol Trace Elem Res 2022; 200:1212-1219. [PMID: 33939131 DOI: 10.1007/s12011-021-02718-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/11/2021] [Indexed: 01/06/2023]
Abstract
Airway smooth muscle contraction is one of the primary factors involved in the initiation and progression of asthma which in turn is regulated by increased cytosolic Ca2+ concentration from intracellular stores and through transmembrane ion channels. Calcium-independent factors such as reactive oxygen species (ROS) generation, nitric oxide (NO) depletion and cyclooxygenase (COX) pathways also contribute to tracheal smooth muscle contraction. Studies on copper toxicity suggest significance of this essential micronutrient overdose in acute respiratory disorders, allergic asthma and ciliary motion in tracheal explants. However, the mechanism of copper caused hypercontraction upon direct exposure to tracheal smooth muscle is largely unknown. In this study we investigate the effect of copper exposure on isolated tracheal rings and relative contributions of various factors in acetylcholine-induced contractions. Results obtained suggest that rise in intracellular calcium concentration via voltage-operated Ca2+ channel (VOCC), store-operated Ca2+ channel (SOCC), stretch-activated channels (SAC) and TRP channel (transient receptor potential channel) activation is the major factor in copper-mediated hypercontraction. ROS generation or COX-dependent pathways do not appear to significantly contribute to Cu2+ caused hypercontraction.
Collapse
Affiliation(s)
- Farah Afrin
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Luqman A Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
5
|
Wani SA, Khan LA, Basir SF. Quercetin and resveratrol ameliorate nickel-mediated hypercontraction in isolated Wistar rat aorta. J Smooth Muscle Res 2022; 58:89-105. [PMID: 36517014 PMCID: PMC9748311 DOI: 10.1540/jsmr.58.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The ameliorative potential of quercetin and resveratrol on isolated endothelium-intact aortic rings incubated with nickel was examined. METHOD The effect of varying concentrations of quercetin and resveratrol was investigated on isolated Wistar rat aortic rings using an organ bath system over vasoconstrictor phenylephrine (PE) at 1 µM. To delineate the mechanism of action, isolated aortic rings were pre-incubated with pharmacological modulators, such as verapamil 1 µM, apocynin 100 µM, indomethacin 100 µM or N-G-nitro-L-arginine methyl ester (L-NAME) 100 µM, separately, before incubation with 100 µM quercetin and 30 µM resveratrol. To assess the ameliorative and prophylactic potentials of quercetin and resveratrol, aortic rings were also incubated with quercetin or resveratrol for 40 min, followed by incubation with nickel for 40 min. RESULTS At 100 µM, quercetin caused 29% inhibition of contraction, while resveratrol at 30 µM caused 55% inhibition of contraction in aortic rings compared with control. Aortic rings incubated with contractile modulators, such as verapamil, apocynin, indomethacin or N-G-nitro-L-arginine methyl ester (L-NAME), along with quercetin or resveratrol at their concentrations producing maximum relaxant effect, showed that both of these natural compounds exert their relaxant effect by inhibiting the generation of reactive oxygen species (ROS) from endothelial and smooth muscle cells, blocking voltage-gated calcium channels, and increasing the release of nitric oxide (NO). The mediation of hypercontraction by nickel is due to the increased ROS and the influx of calcium through voltage-dependent calcium channels. These natural compounds are shown to counter the nickel-induced effects, appearing as effective ameliorators. CONCLUSION In this study, we found that quercetin and resveratrol act as ameliorators of nickel-mediated hypercontraction by decreasing ROS and enhancing NO release from endothelial cells.
Collapse
Affiliation(s)
- Shahnawaz Ahmad Wani
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia,
New Delhi 110025, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia,
New Delhi 110025, India
| | - Seemi Farhat Basir
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia,
New Delhi 110025, India
| |
Collapse
|
6
|
Kinetic mechanisms by which nickel alters the calcium (Ca 2+) transport in intact rat liver. J Biol Inorg Chem 2021; 26:641-658. [PMID: 34304317 DOI: 10.1007/s00775-021-01883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In the present work, the multiple-indicator dilution (MID) technique was used to investigate the kinetic mechanisms by which nickel (Ni2+) affects the calcium (Ca2+) transport in intact rat liver. 45Ca2+ and extra- and intracellular space indicators were injected in livers perfused with 1 mM Ni2+, and the outflow profiles were analyzed by a mathematical model. For comparative purposes, the effects of norepinephrine were measured. The influence of Ni2+ on the cytosolic Ca2+ concentration ([Ca2+]c) in human hepatoma Huh7 cells and on liver glycogen catabolism, a biological response sensitive to cellular Ca2+, was also evaluated. The estimated transfer coefficients of 45Ca2+ transport indicated two mechanisms by which Ni2+ increases the [Ca2+]c in liver under steady-state conditions: (1) an increase in the net efflux of Ca2+ from intracellular Ca2+ stores due to a stimulus of Ca2+ efflux to the cytosolic space along with a diminution of Ca2+ re-entry into the cellular Ca2+ stores; (2) a decrease in Ca2+ efflux from the cytosolic space to vascular space, minimizing Ca2+ loss. Glycogen catabolism activated by Ni2+ was transient contrasting with the sustained activation induced by norepinephrine. Ni2+ caused a partial reduction in the norepinephrine-induced stimulation in the [Ca2+]c in Huh7 cells. Our data revealed that the kinetic parameters of Ca2+ transport modified by Ni2+ in intact liver are similar to those modified by norepinephrine in its first minutes of action, but the membrane receptors or Ca2+ transporters affected by Ni2+ seem to be distinct from those known to be modulated by norepinephrine.
Collapse
|
7
|
Das S, Reddy RC, Chadchan KS, Patil AJ, Biradar MS, Das KK. Nickel and Oxidative Stress: Cell Signaling Mechanisms and Protective Role of Vitamin C. Endocr Metab Immune Disord Drug Targets 2021; 20:1024-1031. [PMID: 31804169 DOI: 10.2174/1871530319666191205122249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nickel activates the signaling pathways through the oxygen sensing mechanism and the signaling cascades that control hypoxia-inducible transcriptional gene expressions through oxidative stress. This review emphasizes on the recent updates of nickel toxicities on oxidant and antioxidant balance, molecular interaction of nickel and its signal transduction through low oxygen microenvironment in the in-vivo physiological system. DISCUSSION Nickel alters intracellular chemical microenvironment by increasing ionized calcium concentration, lipid peroxidation, cyclooxygenase, constitutive nitric oxide synthase, leukotriene B4, prostaglandin E2, interleukins, tumor necrosis factor-α, caspases, complement activation, heat shock protein 70 kDa and hypoxia-inducible factor-1α. The oxidative stress induced by nickel is responsible for the progression of metastasis. It has been observed that nickel exposure induces the generation of reactive oxygen species which leads to the increased expression of p53, NF-kβ, AP-1, and MAPK. Ascorbic acid (vitamin C) prevents lipid peroxidation, oxidation of low-density lipoproteins and advanced oxidation protein products. The mechanism involves that vitamin C is capable of reducing ferric iron to ferrous iron in the duodenum, thus the availability of divalent ferrous ion increases which competes with nickel (a divalent cation itself) and reduces its intestinal absorption and nickel toxicities. CONCLUSION Reports suggested the capability of ascorbic acid as a regulatory factor to influence gene expression, apoptosis and other cellular functions of the living system exposed to heavy metals, including nickel.
Collapse
Affiliation(s)
- Swastika Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur- 586103, Karnataka, India
| | - Rachamalla C Reddy
- Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur-586103, Karnataka, India
| | - Kailash S Chadchan
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur- 586103, Karnataka, India
| | - Arun J Patil
- Department of Biochemistry, Krishna Institute of Medical Sciences "Deemed to be University", Karad- 415539, Maharashtra, India
| | - Mallanagouda S Biradar
- Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur-586103, Karnataka, India
| | - Kusal K Das
- Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur-586103, Karnataka, India
| |
Collapse
|
8
|
Wani SA, Khan LA, Basir SF. Cobalt-Induced Hypercontraction is Mediated by Generationof Reactive Oxygen Species and Influx of Calcium in Isolated RatAorta. Biol Trace Elem Res 2020; 196:110-118. [PMID: 31520195 DOI: 10.1007/s12011-019-01890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
To investigate the mechanism of cobalt-mediated phenylephrine (PE)-induced contraction in endothelium-intact isolated Wistar rat aortic rings. Effect of dose-dependent concentrations of cobalt on PE-induced contraction was investigated in isolated Wistar rat aortic rings using an organ bath system. Aortic rings were pre-incubated with verapamil (1 μM and 20 μM), gadolinium, apocynin, indomethacin or N-G-nitro-L-arginine methyl ester (L-NAME) separately before incubation with cobalt. Endothelium-intact aortic rings were incubated with 800 nM, 1 μM, 10 μM, 50 μM cobalt; we observed 20%, 22%, 32% and 27% increased contractions respectively, while no effect was seen in tension recording on cobalt exposure. Incubation of endothelium-intact aortic rings with 100 μM apocynin and 100 μM L-NAME suggested the role of NADPH oxidase in generation of reactive oxygen species (ROS) and decrease in bioavailability of nitric oxide (NO) from eNOS on exposure to cobalt. Aortic rings pre-incubated with 1 μM and 20 μM verapamil suggested role of both L-type and T-type calcium channels in influx of extracellular calcium in smooth muscle cells. We observed no role of store-operated calcium channels (SOCC) in calcium influx due to cobalt exposure and cyclooxygenase in generation of prostanoids in isolated aortic rings. Cobalt caused rise of PE-induced contractions as a result of the endothelial generation of ROS, by decreasing bioavailability of NO. Generation of ROS may be responsible for causing the influx of extracellular calcium through L-type and T-type Ca2+ channels in smooth muscle cells.
Collapse
Affiliation(s)
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
9
|
Reddy RC, Devaranavadagi B, Yendigeri SM, Bagali S, Kulkarni RV, Das KK. Effect of L-Ascorbic Acid on Nickel-Induced Alteration of Cardiovascular Pathophysiology in Wistar Rats. Biol Trace Elem Res 2020; 195:178-186. [PMID: 31338802 DOI: 10.1007/s12011-019-01829-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
Nickel, a widely used heavy metal is suspected as a cardiotoxic element. The aim of the present study was to assess the possible protective role of l-ascorbic acid on nickel-induced alterations of cardiovascular pathophysiology in male albino rats. Twenty-four albino rats (b.wt. 170-250 g) were randomized into four groups: control; l-ascorbic acid (50 mg/100 g b.wt., orally); NiSO4 (2.0 mg/100 g b.wt., i.p.); NiSO4 with l-ascorbic acid. Cardiovascular electrophysiology, serum and cardiac tissue malondialdehyde (MDA), nitric oxide (NO), ascorbic acid, serum α-tocopherol and serum vascular endothelial growth factor (VEGF) were evaluated. Histopathology of cardiac and aortic tissues was also assessed. NiSO4-treated rats showed a significant increase in heart rate, LF/HF ratio and blood pressure (SBP, DBP and MAP). A significant increase of serum MDA, NO and VEGF in NiSO4 treatment with a concomitant decrease of serum ascorbic acid and α-tocopherol as compared to their respective controls were also observed. Simultaneous supplementation of l-ascorbic acid with NiSO4 significantly decreased LF/HF ratio, BP and oxidative stress parameters, whereas ascorbic acid and α-tocopherol concentration was found to be increased. Histopathology of cardiac and aortic tissues showed nickel-induced focal myocardial hypertrophy and degeneration in cardiac tissue with focal aneurism in aortic tissues. Supplementation with l-ascorbic showed a protective action in both cardiac and aortic tissues. Results indicated the possible beneficial effect of l-ascorbic acid on nickel-induced alteration of the cardiovascular pathophysiology in experimental rats.
Collapse
Affiliation(s)
- R Chandramouli Reddy
- Department of Biochemistry, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India
| | - Basavaraj Devaranavadagi
- Department of Biochemistry, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India
| | - Saeed M Yendigeri
- Department of Pathology, Al-Ameen Medical College, Vijayapura, Karnataka, 586108, India
| | - Shrilaxmi Bagali
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics & Pharmaceutical Technology, BLDEA's SSM College of Pharmacy & Research Centre, BLDE University Campus, Vijayapura, 586103, India
| | - Kusal K Das
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India.
| |
Collapse
|