1
|
Blom JD. Hallucinations and Vitamin B12 Deficiency: A Systematic Review. Psychopathology 2024:1-12. [PMID: 39047712 DOI: 10.1159/000540003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Vitamin B12 deficiency is primarily associated with pernicious anaemia, polyneuropathy, and spinal-cord disease, but publications on its association with hallucinations are on the rise. METHODS I carried out a systematic literature search on these hallucinations in PubMed, PsycINFO, and Google Scholar, up until July 1, 2023. RESULTS The search yielded 50 case studies published between 1960 and 2023. The hallucinations described therein are predominantly visual and/or auditory in nature, with 20% being specified as complex, compound, or panoramic. They are often described in the context of vitamin B12-related neuropsychiatric conditions such as dementia, delirium, epilepsy, psychotic disorder, schizoaffective disorder, bipolar disorder, depressive disorder, catatonia, or obsessive-compulsive disorder. In the context of such disorders, they tend to appear first and also often appear to be the first to disappear with cobalamin treatment. Within an average of 2 months, full amelioration was thus obtained in 75% of the cases and partial amelioration in the remaining 25%. Remarkably, a quarter of the cases involved therapy-resistant hallucinations that fully resolved under cobalamin monotherapy, while other neuropsychiatric manifestations of vitamin B12 deficiency disappeared in 60% of the treated cases. Only 32% of the cases involved comorbid pernicious anaemia. This suggests that two separate or diverging pathways exist for perceptual and haematological symptoms of vitamin B12 deficiency. CONCLUSION In the light of the high prevalence rate of vitamin B12 deficiency in the general population, the findings here presented should be interpreted with great caution. Nonetheless, they offer cues for further research and experimental application in clinical practice. This may be especially relevant in light of the recent increase in the popularity of vegetarianism and the recreational use of nitrous oxide (laughing gas), which are both risk factors for vitamin B12 deficiency.
Collapse
Affiliation(s)
- Jan Dirk Blom
- Outpatient Clinic for Uncommon Psychiatric Syndromes, Parnassia Psychiatric Institute, The Hague, The Netherlands
- Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Demaret T, Bédard K, Soucy JF, Watkins D, Allard P, Levtova A, O'Brien A, Brunel-Guitton C, Rosenblatt DS, Mitchell GA. The MMACHC variant c.158T>C: Mild clinical and biochemical phenotypes and marked hydroxocobalamin response in cblC patients. Mol Genet Metab 2024; 142:108345. [PMID: 38387306 DOI: 10.1016/j.ymgme.2024.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 μM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 μM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.
Collapse
Affiliation(s)
- Tanguy Demaret
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Karine Bédard
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Soucy
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Allard
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Department of Biochemistry, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Alina Levtova
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Alan O'Brien
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Catherine Brunel-Guitton
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Grant A Mitchell
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Baglioni V, Bozza F, Lentini G, Beatrice A, Cameli N, Colacino Cinnante EM, Terrinoni A, Nardecchia F, Pisani F. Psychiatric Manifestations in Children and Adolescents with Inherited Metabolic Diseases. J Clin Med 2024; 13:2190. [PMID: 38673463 PMCID: PMC11051134 DOI: 10.3390/jcm13082190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Inherited metabolic disorders (IEMs) can be represented in children and adolescents by psychiatric disorders. The early diagnosis of IEMs is crucial for clinical outcome and treatment. The aim of this review is to analyze the most recurrent and specific psychiatric features related to IEMs in pediatrics, based on the onset type and psychiatric phenotypes. Methods: Following the PRISMA Statement, a systematic literature review was performed using a predefined algorithm to find suitable publications in scientific databases of interest. After removing duplicates and screening titles and abstracts, suitable papers were analyzed and screened for inclusion and exclusion criteria. Finally, the data of interest were retrieved from the remaining articles. Results: The results of this study are reported by type of symptoms onset (acute and chronic) and by possible psychiatric features related to IEMs. Psychiatric phenomenology has been grouped into five main clinical manifestations: mood and anxiety disorders; schizophrenia-spectrum disorders; catatonia; eating disorders; and self-injurious behaviors. Conclusions: The inclusion of a variety of psychiatric manifestations in children and adolescents with different IEMs is a key strength of this study, which allowed us to explore the facets of seemingly different disorders in depth, avoiding possible misdiagnoses, with the related delay of early and appropriate treatments.
Collapse
Affiliation(s)
| | - Fabiola Bozza
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy; (V.B.); (G.L.); (A.B.); (N.C.); (E.M.C.C.); (A.T.); (F.N.); (F.P.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Arhip L, Brox-Torrecilla N, Romero I, Motilla M, Serrano-Moreno C, Miguélez M, Cuerda C. Late-onset methylmalonic acidemia and homocysteinemia (cblC disease): systematic review. Orphanet J Rare Dis 2024; 19:20. [PMID: 38245797 PMCID: PMC10799514 DOI: 10.1186/s13023-024-03021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
INTRODUCTION Combined methylmalonic acidemia and homocystinuria, cblC type is an inborn error of intracellular cobalamin metabolism and the most common one. The age of onset ranges from prenatal to adult. The disease is characterised by an elevation of methylmalonic acid (MMA) and homocysteine and a decreased production of methionine. The aim is to review existing scientific literature of all late onset cblC patients in terms of clinical symptoms, diagnosis, and outcome. METHODS A bibliographic database search was undertaken in PubMed (MEDLINE) complemented by a reference list search. We combined search terms regarding cblC disease and late onset. Two review authors performed the study selection, data extraction and quality assessment. RESULTS Of the sixty-five articles included in this systematic review, we collected a total of 199 patients. The most frequent clinical symptoms were neuropathy/myelopathy, encephalopathy, psychiatric symptoms, thrombotic microangiopathy, seizures, kidney disease, mild to severe pulmonary hypertension with heart failure and thrombotic phenomena. There were different forms of supplementation used in the different studies collected and, within these studies, some patients received several treatments sequentially and/or concomitantly. The general outcome was: 64 patients recovered, 78 patients improved, 4 patients did not improve, or the disease progressed, and 12 patients died. CONCLUSIONS Most scientific literature regarding the late onset cblC disease comes from case reports and case series. In most cases treatment initiation led to an improvement and even recovery of some patients. The lack of complete recovery underlines the necessity for increased vigilance in unclear clinical symptoms for cblC disease.
Collapse
Affiliation(s)
- Loredana Arhip
- Unidad de Nutrición Clínica y Dietética, Hospital General Universitario Gregorio Marañón, Calle del Doctor Esquerdo 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | | | | | - Marta Motilla
- Unidad de Nutrición Clínica y Dietética, Hospital General Universitario Gregorio Marañón, Calle del Doctor Esquerdo 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Clara Serrano-Moreno
- Unidad de Nutrición Clínica y Dietética, Hospital General Universitario Gregorio Marañón, Calle del Doctor Esquerdo 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Miguélez
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Cristina Cuerda
- Unidad de Nutrición Clínica y Dietética, Hospital General Universitario Gregorio Marañón, Calle del Doctor Esquerdo 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Universidad Complutense Madrid, Madrid, Spain
| |
Collapse
|
5
|
Goyne C, Kansal L. Pearls & Oy-sters: Late-Onset Cobalamin C Deficiency Presenting With Subacute Combined Degeneration. Neurology 2023; 100:486-489. [PMID: 36543571 PMCID: PMC9990847 DOI: 10.1212/wnl.0000000000201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cobalamin C (CblC) deficiency is a rare inborn error in cobalamin (vitamin B12) metabolism which results in impaired intracellular processing of dietary vitamin B12. This leads to a wide range of clinical manifestations including cognitive impairment, psychiatric symptoms, myelopathy, thrombotic events, glomerulonephritis, and pulmonary arterial hypertension. CblC deficiency typically presents in the pediatric population but can also present in adulthood. Diagnosis in adults can be challenging due to the rarity of this condition and its myriad clinical presentations. CblC deficiency is treatable, so early diagnosis is important in preventing permanent neurologic damage. Although CblC deficiency results from a defect in vitamin B12 metabolism, B12 levels remain normal. Diagnosis depends on testing metabolites altered by vitamin B12 dysfunction such as methylmalonic acid (MMA) and homocysteine. We presented a case of a 20-year-old woman who presented with chronic progressive lower extremity weakness and sensory changes. She was eventually diagnosed with subacute combined degeneration because of CblC deficiency and effectively treated. This case highlights the importance of considering inborn errors of metabolism in adult patients and including testing of metabolites such as MMA and homocysteine when suspecting vitamin B12 dysfunction.
Collapse
|
6
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
7
|
Wiedemann A, Oussalah A, Lamireau N, Théron M, Julien M, Mergnac JP, Augay B, Deniaud P, Alix T, Frayssinoux M, Feillet F, Guéant JL. Clinical, phenotypic and genetic landscape of case reports with genetically proven inherited disorders of vitamin B 12 metabolism: A meta-analysis. Cell Rep Med 2022; 3:100670. [PMID: 35764087 PMCID: PMC9381384 DOI: 10.1016/j.xcrm.2022.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age categories are associated with patients' manifestations. The "cytoplasmic transport" cluster is associated with neurological and ophthalmological manifestations, the "mitochondrion" cluster with hypotonia, acute metabolic decompensation, and death, and the "B12 availability" and "remethylation" clusters with anemia and cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger patients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syndrome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the older patients. These results should prompt systematic checking of markers of vitamin B12 status, including homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult patients.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Abderrahim Oussalah
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Nathalie Lamireau
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Maurane Théron
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Melissa Julien
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | | | - Baptiste Augay
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Pauline Deniaud
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Tom Alix
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Marine Frayssinoux
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - François Feillet
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Jean-Louis Guéant
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France.
| |
Collapse
|
8
|
Wei Y, Hao H. Late-onset cobalamin C disease presenting with acute cerebellar ataxia. Neurol Sci 2021; 42:4839-4842. [PMID: 34392393 DOI: 10.1007/s10072-021-05541-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/31/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Yanping Wei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Shuaifuyuan 1, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Honglin Hao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Shuaifuyuan 1, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
9
|
Chu X, Meng L, Zhang W, Luo J, Wang Z, Yuan Y. Peripheral Nervous System Involvement in Late-Onset Cobalamin C Disease? Front Neurol 2020; 11:594905. [PMID: 33324334 PMCID: PMC7726435 DOI: 10.3389/fneur.2020.594905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Cobalamin C (cblC) has a fundamental role in both central and peripheral nervous system function at any age. Neurologic manifestations may be the earliest and often the only manifestation of hereditary or acquired cblC defect. Peripheral neuropathy remains a classical but underdiagnosed complication of cblC defect, especially in late-onset cblC disease caused by mutations in the methylmalonic aciduria type C and homocysteinemia (MMACHC) gene. So the clinical, electrophysiological, and pathological characteristics of late-onset cblC disease are not well-known. Methods: A retrospective study of patients with late-onset cblC disease was conducted at our hospital on a 3-year period. The neuropathy was confirmed by the nerve conduction study. Sural biopsies were performed in 2 patients. Results: Eight patients were identified, with a mean onset age of 16.25 ± 6.07 years. All patients had methylmalonic aciduria, homocysteinemia, compound heterozygous MMACHC gene mutations were detected in all patients, and 7/8 patients with c.482G>A mutation. One patient concomitant with homozygote c.665C>T mutation in 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. All patients showed limb weakness and cognitive impairment. Five patients had possible sensorimotor axonal polyneuropathy predominantly in the distal lower limbs. Sural biopsies showed loss of myelinated and unmyelinated fibers. Electro microscopy revealed crystalline-like inclusions bodies in Schwann cells and axonal degeneration. Conclusion: Late-onset cblC disease had possible heterogeneous group of distal axonal neuropathy. c.482G>A mutation is a hot spot mutation in late-onset cblC disease.
Collapse
Affiliation(s)
- Xujun Chu
- Department of Neurology, First Hospital, Peking University, Beijing, China
| | - Lingchao Meng
- Department of Neurology, First Hospital, Peking University, Beijing, China
| | - Wei Zhang
- Department of Neurology, First Hospital, Peking University, Beijing, China
| | - Jinjun Luo
- Department of Neurology, Temple University, Philadelphia, PA, United States
| | - Zhaoxia Wang
- Department of Neurology, First Hospital, Peking University, Beijing, China
| | - Yun Yuan
- Department of Neurology, First Hospital, Peking University, Beijing, China
| |
Collapse
|
10
|
Chang KJ, Zhao Z, Shen HR, Bing Q, Li N, Guo X, Hu J. Adolescent/adult-onset homocysteine remethylation disorders characterized by gait disturbance with/without psychiatric symptoms and cognitive decline: a series of seven cases. Neurol Sci 2020; 42:1987-1993. [PMID: 33000330 DOI: 10.1007/s10072-020-04756-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Homocysteine remethylation disorders are rare inherited disorders caused by a deficient activity of the enzymes involved in the remethylation of homocysteine to methionine. The adolescent/adult-onset remethylation disorders are rarely reported. We analyzed the clinical and genetic characteristics of seven cases with adolescent/adult remethylation disorders, including 5 cases of the cobalamin C disease (cblC) and 2 cases of the methylenetetrahydrofolate reductase deficiency. The average onset age was 21.1 (range 14 to 40) years. All patients complained of gait disturbances. Other common symptoms included psychiatric symptoms (5/7) and cognitive decline (4/7). Acute encephalopathy, dysarthria, anorexia, vomiting, ketoacidosis, anemia, cataract, and hand tremor were also observed. The mean total homocysteine in serum when the patients were diagnosed was 94.6 (range 53.1-154.5) mol/L. Electrophysiological studies revealed neuropathy in the lower limbs (6/7). The brain MRI showed reversible altered signal from the dorsal portions of the cerebellar hemispheres (1/7), periventricular hyperintensity (2/7), and delayed/impaired myelination (2/7). The sural nerve biopsy performed in one case showed a modest loss of myelinated fibers. Five patients showed heterozygous mutations of the MMACHC gene, including c.482G>A (5/5), c.609G>A (2/5), and c.658-660delAAG (3/5). Two patients showed heterozygous mutations of the MTHFR gene, including c.698C>A (2/2), c.698C>G (1/2), and c.236+1G>A (1/2). The patients responded well to the treatments with significant improvements. Adolescent/adult-onset remethylation disorders are easily misdiagnosed. We recommend testing the serum homocysteine concentrations in young/adult patients with unexplained neuro-psychotic symptoms. Furthermore, individuals with significantly elevated serum homocysteine concentrations should be further tested by organic acid screening and genetic analysis.
Collapse
Affiliation(s)
- Kai-Jie Chang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Hong-Rui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Nan Li
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Xuan Guo
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
11
|
Early warning signs in misrecognized secondary pediatric psychotic disorders: a systematic review. Eur Child Adolesc Psychiatry 2019; 28:1159-1167. [PMID: 30054738 DOI: 10.1007/s00787-018-1208-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Childhood psychotic symptoms are not uncommon, but lack an evidence-based diagnostic approach. Hallucinations, delusions and other psychotic symptoms, without endangered vital symptoms, can be the result of a primary psychiatric disorder or can be the presenting symptom of an underlying somatic disease. It is important to discriminate between these origins because their diagnostic and therapeutic approaches differ substantially. We searched the existing literature to present a first overview of warning symptoms of underlying somatic disease in children with psychotic symptoms. We obtained data through a study of major textbooks and guidelines, and through a systematic review in PubMed, Embase and PsycINFO databases. We included case reports, cohort studies, and reviews. Results show that symptoms related to an underlying somatic disease are quite diverse and resemble symptoms of a primary psychotic process to a large extent. So there exist no (new) early warning signs. These findings are, crucial as they are mainly in contrast to current common knowledge and make the differential diagnosis even more critical and complex. A further prospective cohort study is necessary in an attempt to create a diagnostic algorithm for psychotic symptoms in children.
Collapse
|
12
|
Gilson RC, Wallis L, Yeh J, Gilson RT. Dementia, diarrhea, desquamating shellac-like dermatitis revealing late-onset cobalamin C deficiency. JAAD Case Rep 2018; 4:91-94. [PMID: 29379858 PMCID: PMC5771731 DOI: 10.1016/j.jdcr.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Luke Wallis
- University of Texas Health Science Center, San Antonio, Texas
| | - Jenny Yeh
- University of Texas Health Science Center, San Antonio, Texas
| | - Robert T Gilson
- University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
13
|
Almannai M, Marom R, Divin K, Scaglia F, Sutton VR, Craigen WJ, Lee B, Burrage LC, Graham BH. Milder clinical and biochemical phenotypes associated with the c.482G>A (p.Arg161Gln) pathogenic variant in cobalamin C disease: Implications for management and screening. Mol Genet Metab 2017; 122:60-66. [PMID: 28693988 PMCID: PMC5612879 DOI: 10.1016/j.ymgme.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/24/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cobalamin C disease is a multisystemic disease with variable manifestations and age of onset. Genotype-phenotype correlations are well-recognized in this disorder. Here, we present a large cohort of individuals with cobalamin C disease, several of whom are heterozygous for the c.482G>A pathogenic variant (p.Arg161Gln). We compared clinical characteristics of individuals with this pathogenic variant to those who do not have this variant. To our knowledge, this study represents the largest single cohort of individuals with the c.482G>A (p.Arg161Gln) pathogenic variant. METHODS A retrospective chart review of 27 individuals from 21 families with cobalamin C disease who are followed at our facility was conducted. RESULTS 13 individuals (48%) are compound heterozygous with the c.482G>A (p.Arg161Gln) on one allele and a second pathogenic variant on the other allele. Individuals with the c.482G>A (p.Arg161Gln) pathogenic variant had later onset of symptoms and easier metabolic control. Moreover, they had milder biochemical abnormalities at presentation which likely contributed to the observation that 4 individuals (31%) in this group were missed by newborn screening. CONCLUSION The c.482G>A (p.Arg161Gln) pathogenic variant is associated with milder disease. These individuals may not receive a timely diagnosis as they may not be identified on newborn screening or because of unrecognized, late onset symptoms. Despite the milder presentation, significant complications can occur, especially if treatment is delayed.
Collapse
Affiliation(s)
- Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Kristian Divin
- Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA.
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
14
|
Huemer M, Diodato D, Schwahn B, Schiff M, Bandeira A, Benoist JF, Burlina A, Cerone R, Couce ML, Garcia-Cazorla A, la Marca G, Pasquini E, Vilarinho L, Weisfeld-Adams JD, Kožich V, Blom H, Baumgartner MR, Dionisi-Vici C. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis 2017; 40:21-48. [PMID: 27905001 PMCID: PMC5203859 DOI: 10.1007/s10545-016-9991-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Remethylation defects are rare inherited disorders in which impaired remethylation of homocysteine to methionine leads to accumulation of homocysteine and perturbation of numerous methylation reactions. OBJECTIVE To summarise clinical and biochemical characteristics of these severe disorders and to provide guidelines on diagnosis and management. DATA SOURCES Review, evaluation and discussion of the medical literature (Medline, Cochrane databases) by a panel of experts on these rare diseases following the GRADE approach. KEY RECOMMENDATIONS We strongly recommend measuring plasma total homocysteine in any patient presenting with the combination of neurological and/or visual and/or haematological symptoms, subacute spinal cord degeneration, atypical haemolytic uraemic syndrome or unexplained vascular thrombosis. We strongly recommend to initiate treatment with parenteral hydroxocobalamin without delay in any suspected remethylation disorder; it significantly improves survival and incidence of severe complications. We strongly recommend betaine treatment in individuals with MTHFR deficiency; it improves the outcome and prevents disease when given early.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Childrens' Hospital Zürich, Zurich, Switzerland
- radiz - Rare Disease Initiative Zürich, Clinical Research Priority Program, University of Zürich, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Daria Diodato
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Bernd Schwahn
- Willink Biochemical Genetics Unit, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
- Inserm U1141, Robert Debré Hospital, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, site Robert Debré, Paris, France
| | | | - Jean-Francois Benoist
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
- Inserm U1141, Robert Debré Hospital, Paris, France
- Biochimie, faculté de pharmacie, Université Paris Sud, Paris, France
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital Padova, Padova, Italy
| | - Roberto Cerone
- University Dept of Pediatrics, Giannina Gaslini Institute, Genoa, Italy
| | - Maria L Couce
- Congenital Metabolic Diseases Unit, Hospital Clínico Universitario de Santiago de Compostela, IDIS, CIBER, Compostela, Spain
| | - Angeles Garcia-Cazorla
- Department of Neurology, Neurometabolism Unit, and CIBERER (ISCIII), Hospital Sant Joan de Deu, Barcelona, Spain
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firence, Italy
| | - Elisabetta Pasquini
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, A. Meyer Children's University Hospital, Florence, Italy
| | - Laura Vilarinho
- Newborn Screening, Metabolism & Genetics Unit, National Institute of Health, Porto, Portugal
| | - James D Weisfeld-Adams
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Inherited Metabolic Diseases Clinic, Childrens Hospital Colorado, Aurora, CO, USA
| | - Viktor Kožich
- Institute of Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Henk Blom
- Laboratory of Clinical Biochemistry and Metabolism, Center for Pediatrics and Adolescent Medicine University Hospital, Freiburg, Freiburg, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Childrens' Hospital Zürich, Zurich, Switzerland.
- radiz - Rare Disease Initiative Zürich, Clinical Research Priority Program, University of Zürich, Zurich, Switzerland.
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy.
| |
Collapse
|
15
|
A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids. J Sep Sci 2016. [DOI: 10.05310.1002/jssc.201501038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Karaźniewicz-Łada M, Główka A. A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids. J Sep Sci 2015; 39:132-48. [DOI: 10.1002/jssc.201501038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics; Poznan University of Medical Sciences; Poznań Poland
| | - Anna Główka
- Department of Bromatology; Poznan University of Medical Sciences; Poznań Poland
| |
Collapse
|