1
|
Burger JC, Hopman LHGA, Kemme MJB, Hoeksema W, Takx RAP, Figueras I Ventura RM, Campos FO, Plank G, Planken RN, Allaart CP, van Halm VP, Postema PG, Götte MJW, Bishop MJ, Bhagirath P. Optimizing ventricular tachycardia ablation through imaging-based assessment of arrhythmic substrate: A comprehensive review and roadmap for the future. Heart Rhythm O2 2024; 5:561-572. [PMID: 39263615 PMCID: PMC11385403 DOI: 10.1016/j.hroo.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Ventricular tachycardia (VT) is a life-threatening heart rhythm and has long posed a complex challenge in the field of cardiology. Recent developments in advanced imaging modalities have aimed to improve comprehension of underlying arrhythmic substrate for VT. To this extent, high-resolution cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT) have emerged as tools for accurately visualizing and characterizing scar tissue, fibrosis, and other critical structural abnormalities within the heart, providing novel insights into VT triggers and substrate. However, clinical implementation of knowledge derived from these advanced imaging techniques in improving VT treatment and guiding invasive therapeutic strategies continues to pose significant challenges. A pivotal concern lies in the absence of standardized imaging protocols and analysis methodologies, resulting in a large variance in data quality and consistency. Furthermore, the clinical significance and outcomes associated with VT substrate characterization through CMR and CCT remain dynamic and subject to ongoing evolution. This highlights the need for refinement of these techniques before their reliable integration into routine patient care can be realized. The primary objectives of this study are twofold: firstly, to provide a comprehensive overview of the studies conducted over the last 15 years, summarizing the current available literature on imaging-based assessment of VT substrate. Secondly, to critically analyze and evaluate the selected studies, with the aim of providing valuable insights that can inform current clinical practice and future research.
Collapse
Affiliation(s)
- Janneke C Burger
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michiel J B Kemme
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wiert Hoeksema
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Richard A P Takx
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vokko P van Halm
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pranav Bhagirath
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Guichard JB, Regany-Closa M, Vázquez-Calvo S, Zazu B, Pellicer Sendra B, Serrano-Campaner J, Molero-Pereira S, Borràs R, Ortiz JT, Falzone PV, Eulogio F, Reventos-Presmanes J, Garre P, Arbelo E, Althoff TF, Guasch E, Tolosana JM, Brugada J, Mont L, Porta-Sánchez A, Roca-Luque I. Substrate Mapping for Ventricular Tachycardia Ablation Through High-Density Whole-Chamber Double Extra Stimuli: The S3 Protocol. JACC Clin Electrophysiol 2024; 10:1534-1547. [PMID: 38819348 DOI: 10.1016/j.jacep.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND A partial delineation of targets for ablation of ventricular tachycardia (VT) during a stable rhythm is likely responsible for a suboptimal success rate. The abnormal low-voltage near-field functional components may be hidden within the high-amplitude far-field signal. OBJECTIVES The aim of this study was to evaluate the benefit and feasibility of functional substrate mapping using a full-ventricle S3 protocol and to assess its colocalization with arrhythmogenic conducting channels (CCs) on late gadolinium enhancement cardiac magnetic resonance. METHODS An S3 mapping protocol with a drive train of S1 followed by S2 (effective refractory period + 30 ms) and S3 (effective refractory period + 50 ms) from the right ventricular apex was performed in 40 consecutive patients undergoing scar-related VT ablation. Deceleration zones (DZs) and areas of late potentials (LPs) were identified for all maps. A preprocedural noninvasive substrate assessment was done using late gadolinium enhancement cardiac magnetic resonance and postprocessing with automated CC identification. RESULTS The S3 protocol was completed in 34 of the 40 procedures (85.0%). The S3 protocol enhanced the identification of VT isthmus on the basis of DZ (89% vs 62%; P < 0.01) and LP (93% vs 78%; P = 0.04) assessment. The percentage of CCs unmasked by DZs and LPs using S3 maps was significantly higher than the ones using S2 and S1 maps (78%, 65%, and 48% [P < 0.001] and 88%, 81%, and 68% [P < 0.01], respectively). The functional substrate identified during S3 activation mapping was significantly more extensive than the one identified using S2 and S1, including a greater number of DZs (2.94, 2.47, and 1.82, respectively; P < 0.001) and a wider area of LPs (44.1, 38.2, and 29.4 cm2, respectively; P < 0.001). After VT ablation, 77.9% of patients have been VT free during a median follow-up period of 13.6 months. CONCLUSIONS The S3 protocol was feasible in 85% of patients, allows a better identification of targets for ablation, and might improve VT ablation results.
Collapse
Affiliation(s)
- Jean-Baptiste Guichard
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain; INSERM, SAINBIOSE U1059, University Hospital of Saint-Étienne, Saint-Étienne, France; Cardiology Department, University Hospital of Saint-Étienne, Saint-Étienne, France
| | - Mariona Regany-Closa
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sara Vázquez-Calvo
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Blanca Zazu
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Berta Pellicer Sendra
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Serrano-Campaner
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sílvia Molero-Pereira
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Roger Borràs
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red e Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - José Tomás Ortiz
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pasquale Valerio Falzone
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Frida Eulogio
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jana Reventos-Presmanes
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Paz Garre
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Elena Arbelo
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Till F Althoff
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jose María Tolosana
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Brugada
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Mont
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Andreu Porta-Sánchez
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ivo Roca-Luque
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
3
|
Cauti FM, Martini N, Fioravanti F, Tanese N, Magnocavallo M, Rampa L, Calore F, Scalisi G, Peretto G, Barengo A, Hadjis A, Radinovic A, Della Bella P. Analysis of electrogram peak frequency during ventricular tachycardia ablation: Insights into human tridimensional ventricular tachycardia circuits. Heart Rhythm 2024:S1547-5271(24)02697-3. [PMID: 38880202 DOI: 10.1016/j.hrthm.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Affiliation(s)
| | - Nicolò Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Nikita Tanese
- Arrhythmology Department IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Lorenzo Rampa
- Arrhythmology Department IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Giulia Scalisi
- University of Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giovanni Peretto
- Arrhythmology Department IRCCS San Raffaele Hospital, Milan, Italy
| | - Alberto Barengo
- Arrhythmology Department IRCCS San Raffaele Hospital, Milan, Italy
| | - Alexios Hadjis
- Division of Cardiology, Hôpital du Sacrè-Coeur de Montrèal, University of Montreal, Quebec, Canada
| | - Andrea Radinovic
- Arrhythmology Department IRCCS San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
4
|
Berte B, Pürerfellner H, Roten L, Rissotto S, Mahida S, Reichlin T, Kobza R. Combined complex electrophysiological interventions due to improved standardization and efficiency: proof of concept. Europace 2023; 26:euae014. [PMID: 38227808 PMCID: PMC10810277 DOI: 10.1093/europace/euae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Affiliation(s)
- Benjamin Berte
- Heart Center, Hirslanden St Anna, Zentralstrasse 1, 6003 Lucerne, Switzerland
| | | | - Laurent Roten
- Cardiology Department, Inselspital Bern, Bern, Switzerland
| | | | - Saagar Mahida
- Department of Cardiac Electrophysiology, Liverpool Heart and Chest Hospital, Liverpool, UK
| | | | - Richard Kobza
- Heart Center, Hirslanden St Anna, Zentralstrasse 1, 6003 Lucerne, Switzerland
| |
Collapse
|
5
|
Salvador Montañés O, Fitzgerald JL, Jackson N, Haldar S, Valli H, Cotton J, Morris GM, Gizurarson S, Cabrera JA, Nanthakumar K, Porta-Sánchez A. Decrement Evoked Potential (DEEP) Mapping of the Atria: Unmasking Atrial Fibrillation Substrate. Heart Lung Circ 2023; 32:1198-1206. [PMID: 37634968 DOI: 10.1016/j.hlc.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Atrial myopathy may underlie the progression of atrial fibrillation (AF) from a treatable disease to an irreversible condition with poor ablation outcomes. Electrophysiological methods to unmask areas prone to re-entry initiation could be key to defining latent atrial myopathy. METHODS Consecutive patients referred for AF ablation were prospectively included at four institutions. Decrement evoked potential mapping (DEEP) was performed in eight left atrial sites and five right atrial sites, from two different pacing locations (endocardially from the left atrial appendage, epicardially from the proximal coronary sinus). The electrograms (EGMs) during S1 600 ms drive and after an extra stimulus (S2 at +30 ms above atrial refractoriness) were studied at each location and assessed for decremental properties. Follow-up was 12 months. RESULTS Seventy-four patients were included and 85% had persistent AF. A total of 17,614 EGMs were individually analysed and measured. Nine percent of the EGMs showed DEEP properties (local delay of >10 ms after S2) with a mean decrement of 33±26 ms. DEEPs were more frequent in the left atrium than the right atrium (9.4% vs 8.0%; p<0.001) and more prevalent in persistent AF patients than paroxysmal AF patients (9.8% vs 4.6% p=0.001). Atrial DEEPs were more frequently unmasked in normal bipolar voltage areas and by epicardial pacing than endocardial pacing (9.6% vs 8.4%, respectively; p=0.004). Within the left atrium, the roof had the highest prevalence of DEEP EGMs. CONCLUSIONS DEEP mapping of both atria is useful for highlighting areas with a tendency for unidirectional block and re-entry initiation. Those areas are more easily unmasked by epicardial pacing from the coronary sinus and more prevalent in persistent AF patients than in paroxysmal AF patients.
Collapse
Affiliation(s)
- Oscar Salvador Montañés
- Hospital Universitario Quirónsalud Madrid, Spain; Hospital Universitario de Torrejón, Madrid, Spain; Universidad Francisco de Vitoria, Departamento de Medicina, Madrid, Spain
| | | | - Nicholas Jackson
- John Hunter Hospital and the University of Newcastle, Newcastle, Australia
| | | | - Haseeb Valli
- Royal Brompton & Harefield Hospitals, London, UK
| | - Josh Cotton
- Royal Brompton & Harefield Hospitals, London, UK
| | - Gwilym M Morris
- John Hunter Hospital and the University of Newcastle, Newcastle, Australia
| | | | | | | | - Andreu Porta-Sánchez
- Hospital Universitario Quirónsalud Madrid, Spain; Hospital Clinic de Barcelona, Institut d'Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Fundación Centro Nacional de Investigaciones Carlos III.
| |
Collapse
|
6
|
Baldazzi G, Orrù M, Viola G, Pani D. Computer-aided detection of arrhythmogenic sites in post-ischemic ventricular tachycardia. Sci Rep 2023; 13:6906. [PMID: 37106017 PMCID: PMC10140038 DOI: 10.1038/s41598-023-33866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Nowadays, catheter-based ablation in patients with post-ischemic ventricular tachycardia (VT) is performed in arrhythmogenic sites identified by electrophysiologists by visual inspection during electroanatomic mapping. This work aims to present the development of machine learning tools aiming at supporting clinicians in the identification of arrhythmogenic sites by exploiting innovative features that belong to different domains. This study included 1584 bipolar electrograms from nine patients affected by post-ischemic VT. Different features were extracted in the time, time scale, frequency, and spatial domains and used to train different supervised classifiers. Classification results showed high performance, revealing robustness across the different classifiers in terms of accuracy, true positive, and false positive rates. The combination of multi-domain features with the ensemble tree is the most effective solution, exhibiting accuracies above 93% in the 10-time 10-fold cross-validation and 84% in the leave-one-subject-out validation. Results confirmed the effectiveness of the proposed features and their potential use in a computer-aided system for the detection of arrhythmogenic sites. This work demonstrates for the first time the usefulness of supervised machine learning for the detection of arrhythmogenic sites in post-ischemic VT patients, thus enabling the development of computer-aided systems to reduce operator dependence and errors, thereby possibly improving clinical outcomes.
Collapse
Affiliation(s)
- Giulia Baldazzi
- Medical Devices and Signal Processing (MeDSP) Lab, Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy.
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy.
| | - Marco Orrù
- Medical Devices and Signal Processing (MeDSP) Lab, Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Graziana Viola
- Department of Cardiology, Santissima Annunziata Hospital, Sassari, Italy
| | - Danilo Pani
- Medical Devices and Signal Processing (MeDSP) Lab, Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Atreya AR, Yalagudri SD, Subramanian M, Rangaswamy VV, Saggu DK, Narasimhan C. Best Practices for the Catheter Ablation of Ventricular Arrhythmias. Card Electrophysiol Clin 2022; 14:571-607. [PMID: 36396179 DOI: 10.1016/j.ccep.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Techniques for catheter ablation have evolved to effectively treat a range of ventricular arrhythmias. Pre-operative electrocardiographic and cardiac imaging data are very useful in understanding the arrhythmogenic substrate and can guide mapping and ablation. In this review, we focus on best practices for catheter ablation, with emphasis on tailoring ablation strategies, based on the presence or absence of structural heart disease, underlying clinical status, and hemodynamic stability of the ventricular arrhythmia. We discuss steps to make ablation safe and prevent complications, and techniques to improve the efficacy of ablation, including optimal use of electroanatomical mapping algorithms, energy delivery, intracardiac echocardiography, and selective use of mechanical circulatory support.
Collapse
Affiliation(s)
- Auras R Atreya
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India; Division of Cardiovascular Medicine, Electrophysiology Section, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sachin D Yalagudri
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | - Muthiah Subramanian
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | | | - Daljeet Kaur Saggu
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | - Calambur Narasimhan
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India.
| |
Collapse
|
8
|
Kao PH, Chung FP, Lin YJ, Chang SL, Lo LW, Hu YF, Tuan TC, Chao TF, Liao JN, Lin CY, Chang TY, Kuo L, Wu CI, Liu CM, Liu SH, Cheng WH, Lin L, Ton AKN, Hsu CY, Chhay C, Chen SA. Application of Ensite TM LiveView Function for Identification of Scar-related Ventricular Tachycardia Isthmus. J Cardiovasc Electrophysiol 2022; 33:1223-1233. [PMID: 35304796 DOI: 10.1111/jce.15455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Dynamic display of real-time wavefront activation pattern may facilitate the recognition of reentrant circuits, particularly the diastolic path of ventricular tachycardia (VT). OBJECTIVE We aimed to evaluate the feasibility of LiveView Dynamic Display for mapping the critical isthmus of scar-related reentrant VT. METHODS Patients with mappable scar-related reentrant VT were selected. The characteristics of the underlying substrates and VT circuits were assessed using HD grid multi-electrode catheter. The VT isthmuses were identified based on the activation map, entrainment, and ablation results. The accuracy of the LiveView findings in detecting potential VT isthmus was assessed. RESULTS We studied 18 scar-related reentrant VTs in 10 patients (median age: 59.5 years, 100% male) including 6 and 4 patients with ischemic and non-ischemic cardiomyopathy, respectively. The median VT cycle length was 426 ms (interquartile range: 386-466 ms). Among 590 regional mapping displays, 92.0% of the VT isthmus sites were identified by LiveView Dynamic Display. The accuracy of LiveView for isthmus identification was 84%, with positive and negative predictive values of 54.8% and 97.8%, respectively. The area with abnormal electrograms was negatively correlated with the accuracy of LiveView Dynamic Display (r = -0.506, p = 0.027). The median time interval to identify a VT isthmus using LiveView was significantly shorter than that using conventional activation maps (50.5 [29.8-120] vs. 219 [157.5-400.8] s, p = 0.015). CONCLUSION This study demonstrated the feasibility of LiveView Dynamic Display in identifying the critical isthmus of scar-related VT with modest accuracy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pei-Heng Kao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Linda Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An Khanh-Nu Ton
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chu-Yu Hsu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chheng Chhay
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cardiovascular center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|