1
|
Girardin L, Lind N, von Tengg-Kobligk H, Balabani S, Díaz-Zuccarini V. Patient-specific compliant simulation framework informed by 4DMRI-extracted pulse wave Velocity: Application post-TEVAR. J Biomech 2024; 175:112266. [PMID: 39232449 DOI: 10.1016/j.jbiomech.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
We introduce a new computational framework that utilises Pulse Wave Velocity (PWV) extracted directly from 4D flow MRI (4DMRI) to inform patient-specific compliant computational fluid dynamics (CFD) simulations of a Type-B aortic dissection (TBAD), post-thoracic endovascular aortic repair (TEVAR). The thoracic aortic geometry, a 3D inlet velocity profile (IVP) and dynamic outlet boundary conditions are derived from 4DMRI and brachial pressure patient data. A moving boundary method (MBM) is applied to simulate aortic wall displacement. The aortic wall stiffness is estimated through two methods: one relying on area-based distensibility and the other utilising regional pulse wave velocity (RPWV) distensibility, further fine-tuned to align with in vivo values. Predicted pressures and outlet flow rates were within 2.3 % of target values. RPWV-based simulations were more accurate in replicating in vivo hemodynamics than the area-based ones. RPWVs were closely predicted in most regions, except the endograft. Systolic flow reversal ratios (SFRR) were accurately captured, while differences above 60 % in in-plane rotational flow (IRF) between the simulations were observed. Significant disparities in predicted wall shear stress (WSS)-based indices were observed between the two approaches, especially the endothelial cell activation potential (ECAP). At the isthmus, the RPWV-driven simulation indicated a mean ECAP>1.4 Pa-1 (critical threshold), indicating areas potentially prone to thrombosis, not captured by the area-based simulation. RPWV-driven simulation results agree well with 4DMRI measurements, validating the proposed pipeline and facilitating a comprehensive assessment of surgical decision-making scenarios and potential complications, such as thrombosis and aortic growth.
Collapse
Affiliation(s)
- Louis Girardin
- University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.
| | - Niklas Lind
- Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, Bern 3010, Switzerland.
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, Bern 3010, Switzerland.
| | - Stavroula Balabani
- University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.
| | - Vanessa Díaz-Zuccarini
- University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.
| |
Collapse
|
2
|
Girardin L, Stokes C, Thet MS, Oo AY, Balabani S, Díaz-Zuccarini V. Patient-Specific Haemodynamic Analysis of Virtual Grafting Strategies in Type-B Aortic Dissection: Impact of Compliance Mismatch. Cardiovasc Eng Technol 2024; 15:290-304. [PMID: 38438692 PMCID: PMC11239731 DOI: 10.1007/s13239-024-00713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Compliance mismatch between the aortic wall and Dacron Grafts is a clinical problem concerning aortic haemodynamics and morphological degeneration. The aortic stiffness introduced by grafts can lead to an increased left ventricular (LV) afterload. This study quantifies the impact of compliance mismatch by virtually testing different Type-B aortic dissection (TBAD) surgical grafting strategies in patient-specific, compliant computational fluid dynamics (CFD) simulations. MATERIALS AND METHODS A post-operative case of TBAD was segmented from computed tomography angiography data. Three virtual surgeries were generated using different grafts; two additional cases with compliant grafts were assessed. Compliant CFD simulations were performed using a patient-specific inlet flow rate and three-element Windkessel outlet boundary conditions informed by 2D-Flow MRI data. The wall compliance was calibrated using Cine-MRI images. Pressure, wall shear stress (WSS) indices and energy loss (EL) were computed. RESULTS Increased aortic stiffness and longer grafts increased aortic pressure and EL. Implementing a compliant graft matching the aortic compliance of the patient reduced the pulse pressure by 11% and EL by 4%. The endothelial cell activation potential (ECAP) differed the most within the aneurysm, where the maximum percentage difference between the reference case and the mid (MDA) and complete (CDA) descending aorta replacements increased by 16% and 20%, respectively. CONCLUSION This study suggests that by minimising graft length and matching its compliance to the native aorta whilst aligning with surgical requirements, the risk of LV hypertrophy may be reduced. This provides evidence that compliance-matching grafts may enhance patient outcomes.
Collapse
Affiliation(s)
- Louis Girardin
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Catriona Stokes
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Myat Soe Thet
- Department of Cardiothoracic Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Aung Ye Oo
- Department of Cardiothoracic Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK.
| |
Collapse
|
3
|
Wlasitsch-Nagy Z, Bálint A, Kőnig-Péter A, Varga P, Várady E, Bogner P, Gasz B. New CFD-based method for morphological and functional assessment in cardiovascular skill training. J Vasc Surg Cases Innov Tech 2022; 8:770-778. [DOI: 10.1016/j.jvscit.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
|
4
|
Stokes C, Bonfanti M, Li Z, Xiong J, Chen D, Balabani S, Díaz-Zuccarini V. A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics. J Biomech 2021; 129:110793. [PMID: 34715606 PMCID: PMC8907869 DOI: 10.1016/j.jbiomech.2021.110793] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023]
Abstract
We present a novel, cost-efficient methodology to simulate aortic haemodynamics in a patient-specific, compliant aorta using an MRI data fusion process. Based on a previously-developed Moving Boundary Method, this technique circumvents the high computational cost and numerous structural modelling assumptions required by traditional Fluid-Structure Interaction techniques. Without the need for Computed Tomography (CT) data, the MRI images required to construct the simulation can be obtained during a single imaging session. Black Blood MR Angiography and 2D Cine-MRI data were used to reconstruct the luminal geometry and calibrate wall movement specifically to each region of the aorta. 4D-Flow MRI and non-invasive pressure measurements informed patient-specific inlet and outlet boundary conditions. Luminal area closely matched 2D Cine-MRI measurements with a mean error of less than 4.6% across the cardiac cycle, while physiological pressure and flow distributions were simulated to within 3.3% of patient-specific targets. Moderate agreement with 4D-Flow MRI velocity data was observed. Despite lower peak velocity, an equivalent rigid-wall simulation predicted a mean Time-Averaged Wall Shear Stress (TAWSS) 13% higher than the compliant simulation. The agreement observed between compliant simulation results and MRI data is testament to the accuracy and efficiency of this MRI-based simulation technique.
Collapse
Affiliation(s)
- Catriona Stokes
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Mirko Bonfanti
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Zeyan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Jiang Xiong
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Stavroula Balabani
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Vanessa Díaz-Zuccarini
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| |
Collapse
|