1
|
Huasasquiche L, Alejandro L, Ccori T, Cántaro-Segura H, Samaniego T, Quispe K, Solórzano R. Bacillus subtilis and Rhizophagus intraradices Improve Vegetative Growth, Yield, and Fruit Quality of Fragaria × ananassa var. San Andreas. Microorganisms 2024; 12:1816. [PMID: 39338490 PMCID: PMC11434249 DOI: 10.3390/microorganisms12091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Strawberry cultivation requires strategies that maintain or improve its yield within a scheme in which reducing fertilizers and other chemical products can make its consumption safer and more environmentally friendly. This study aims to evaluate the effect of Bacillus subtilis and Rhizophagus intraradices on strawberry growth, yield, and fruit quality. B. subtilis and R. intraradices were inoculated and co-inoculated under three fertilization levels of 225-100-250, 112-50-125, and 0-0-0 kg∙ha-1 of N, P2O5 and K2O. Vegetative growth was evaluated in plant height (cm), leaf area (cm2), aerial fresh weight (g), aerial dry weight (g), and plant coverage (%) variables. Fruit quality parameters such as total acidity (g∙100 mL-1), soluble solids (Brix°), and firmness (kg) were also determined, as well as the number of fruits per m2 and yield (t∙ha-1). The results showed that the pre-treatment of root immersion in a nutrient solution with B. subtilis and the fractionation of 6 L B. subtilis inoculation per plant at a concentration of 107 CFU∙mL-1, in combination with 225-100-250 kg∙ha-1 of N, P2O5, and K2O, achieved the highest accumulation of dry matter (12.9 ± 1.9 g∙plant-1), the highest number of fruits (28.2 ± 4.5 fruits∙m-2), and the highest yield (7.2 ± 1.4 t∙ha-1). In addition, this treatment increased the soluble sugar content by 34.78% and fruit firmness by 26.54% compared to the control without inoculation. This study highlights the synergistic effect of mineral nutrition and microbial inoculation with B. subtilis in increasing strawberry yield and fruit quality.
Collapse
Affiliation(s)
- Lucero Huasasquiche
- Estación Experimental Agraria Donoso, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15200, Peru
| | - Leonela Alejandro
- Facultad de Agronomía, Universidad Nacional Agraria La Molina (UNALM), Lima 15024, Peru
| | - Thania Ccori
- Facultad de Agronomía, Universidad Nacional Agraria La Molina (UNALM), Lima 15024, Peru
| | - Héctor Cántaro-Segura
- Facultad de Agronomía, Universidad Nacional Agraria La Molina (UNALM), Lima 15024, Peru
| | - Tomás Samaniego
- Estación Experimental Agraria Donoso, Dirección de Supervisión y Monitoreo de las Estaciones Experimentales, Instituto Nacional de Innovación Agraria (INIA), Lima 15200, Peru
| | - Kenyi Quispe
- Centro Experimental La Molina, Dirección de Supervisión y Monitoreo de las Estaciones Experimentales, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru
| | - Richard Solórzano
- Facultad de Ciencias Ambientales, Universidad Científica del Sur (UCSUR), Lima 15067, Peru
| |
Collapse
|
2
|
Pisco-Ortiz C, González-Almario A, Uribe-Gutiérrez L, Soto-Suárez M, Amaya-Gómez CV. Suppression of tomato wilt by cell-free supernatants of Acinetobacter baumannii isolates from wild cacao from the Colombian Amazon. World J Microbiol Biotechnol 2023; 39:297. [PMID: 37658991 PMCID: PMC10475004 DOI: 10.1007/s11274-023-03719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most limiting diseases of this crop. The use of fungicides and varieties resistant to the pathogen has not provided adequate control of the disease. In this study, siderophore-producing bacteria isolated from wild cocoa trees from the Colombian Amazon were characterized to identify prominent strategies for plant protection. The isolates were taxonomically classified into five different genera. Eight of the fourteen were identified as bacteria of the Acinetobacter baumannii complex. Isolates CBIO024, CBIO086, CBIO117, CBIO123, and CBIO159 belonging to this complex showed the highest efficiency in siderophore synthesis, producing these molecules in a range of 91-129 µmol/L deferoxamine mesylate equivalents. A reduction in disease severity of up to 45% was obtained when plants were pretreated with CBIO117 siderophore-rich cell-free supernatant (SodSid). Regarding the mechanism of action that caused antagonistic activity against Fol, it was found that plants infected only with Fol and plants pretreated with SodSid CBIO117 and infected with Fol showed higher levels of PR1 and ERF1 gene expression than control plants. In contrast, MYC2 gene expression was not induced by the SodSid CBIO117 application. However, it was upregulated in plants infected with Fol and plants pretreated with SodSid CBIO117 and infected with the pathogen. In addition to the disease suppression exerted by SodSid CBIO117, the results suggest that the mechanism underlying this effect is related to an induction of systemic defense through the salicylic acid, ethylene, and priming defense via the jasmonic acid pathway.
Collapse
Affiliation(s)
- Carolina Pisco-Ortiz
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Villavicencio, Meta, Colombia
| | | | - Liz Uribe-Gutiérrez
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Mauricio Soto-Suárez
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Carol V Amaya-Gómez
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Villavicencio, Meta, Colombia.
| |
Collapse
|
3
|
Blanco EL, Rada F, Paolini J. The role of a microbial consortium on gas exchange and water relations in Allium cepa L. under water and nutritional deficit conditions. Arch Microbiol 2023; 205:105. [PMID: 36877246 DOI: 10.1007/s00203-023-03449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Synergistic studies of microorganisms in the last decade have been mostly directed towards their biofertilizing effects on growth and crop yield. Our research examines the role of a microbial consortium (MC) on physiological responses of Allium cepa hybrid F1 2000 under water and nutritional deficit in a semi-arid environment. An onion crop was established with normal irrigation (NIr) (100% ETc) and water deficit (WD) (67% ETc) and different fertilization treatments (MC with 0%, 50% and 100% NPK). Gas exchange (Stomatal conductance (Gs), transpiration (E) and CO2 assimilation rates (A)) and leaf water status were evaluated throughout its growth cycle. The MC + 50% NPK treatment with NIr maintained similar A rates to the production control. A. cepa decreased Gs by approximately 50% in the WD treatment. The highest water use efficiency (WUE) and an increase in the modulus of elasticity in response to water stress were obtained for the 100% NPK treatment under non-inoculated WD. The onion hybrid F1 2000 was tolerant to water stress and under non-limiting nutrient conditions, irrigation may be reduced. The MC facilitated the availability of nutrients under NIr allowing a 50% reduction in the application of high doses of fertilization without affecting yield, resulting in a suitable agroecological strategy for this crop.
Collapse
Affiliation(s)
- Erika Lorena Blanco
- Instituto de Ciencias Ambientales y Ecológicas (ICAE), Postgrado en Ecología Tropical, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida, Venezuela. .,Laboratorio de Fitobiotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida, Venezuela. .,Laboratorio de Investigación en Biotecnología y Química de Polímeros (LIBQPOL), Decanato de Investigación, Universidad Nacional Experimental del Táchira (UNET), San Cristóbal, Venezuela.
| | - Fermín Rada
- Instituto de Ciencias Ambientales y Ecológicas (ICAE), Postgrado en Ecología Tropical, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida, Venezuela.,Laboratorio de Ecología y Fisiología Vegetal (EcoFiV), Universidad de los Andes (UniAndes), Bogotá, Colombia
| | - Jorge Paolini
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo 21825, Caracas, 1020, Venezuela
| |
Collapse
|
4
|
Meza C, Valenzuela F, Echeverría-Vega A, Gomez A, Sarkar S, Cabeza RA, Arencibia AD, Quiroz K, Carrasco B, Banerjee A. Plant-growth-promoting bacteria from rhizosphere of Chilean common bean ecotype ( Phaseolus vulgaris L.) supporting seed germination and growth against salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1052263. [PMID: 36618623 PMCID: PMC9814130 DOI: 10.3389/fpls.2022.1052263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Salinity abiotic stress is increasing day by day due to continuous global warming and climate change. This is also becoming one of the major causes behind the reduction in crop production. Plant-bacteria interaction plays an essential role in improving crop yield without using any chemical fertilizers. The present study aims to characterize the interaction between plant-growth-promoting bacteria (PGPB) and their role in mitigating salinity stress for local variety crops. Therefore, in this work, two PGPB, namely, Bacillus proteolyticus Cyn1 and Bacillus safensis Cyn2, were isolated from rhizospheric soil of the Chilean common bean ecotype "Sapito" (Phaseolus vulgaris L.), and their PGPB traits were analyzed. Cyn1 can produce NH3 and HCN and also secrete siderophores, whereas Cyn2 produced NH3 and siderophores but responded negatively to HCN production. Both the isolated bacteria have shown a positive result for ACC deaminase production, phosphate solubilization, and catalase enzyme secretion. Under all three tested abiotic stresses, i.e., temperature, water, and salinity, both the bacteria and their consortium have demonstrated positive responses. Cyn1 under temperature stress and water stress can produce a biofilm network to combat the stress. While under salinity stress, both the PGPB isolates indicated the production of stress components and cytoplasmic inclusion bodies. Based on the response, among all other abiotic stresses, salinity stress was chosen for further plant-bacteria interaction study and growth. Visible root colonization of the bacteria has been observed in comparison to the control. The germination index was 100% for all experimental setups of seed bacterization, both under control conditions and salinity stress. Both bacteria responded with good PGP traits that helped in the growth of healthy plants after the bacterial treatment in final pot experiments. Additionally, the consortium and the plants treated with Cyn1 have demonstrated high production of photosynthetic pigments in both experimental setups. Both B. proteolyticus Cyn1 and B. safensis Cyn2 have shown promising PGP characters and efficient response against toxicity related to salinity. Hence, both of these bacteria and consortium can be used for improved agricultural production of Chilean native common beans in the near future.
Collapse
Affiliation(s)
- Cynthia Meza
- Doctorado en Biotecnología Traslacional (DBT), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), Talca, Chile
| | | | - Alex Echeverría-Vega
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca, Chile
| | - Aleydis Gomez
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca, Chile
| | - Ricardo A. Cabeza
- Plant Nutrition Laboratory, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Ariel D. Arencibia
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Karla Quiroz
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Aparna Banerjee
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
5
|
Díaz-Rodríguez AM, Salcedo Gastelum LA, Félix Pablos CM, Parra-Cota FI, Santoyo G, Puente ML, Bhattacharya D, Mukherjee J, de los Santos-Villalobos S. The Current and Future Role of Microbial Culture Collections in Food Security Worldwide. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.614739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Food security is the pillar of nutritional wellbeing for food availability, and is necessary to satisfy all physiological needs to thus maintain the general wellbeing of populations. However, global agricultural deficiencies occur due to rapid population growth, causing an increase in competition for resources; such as water, land, and energy, leading to the overexploitation of agro-ecosystems, and the inability to produce a suitable quantity of efficient food. Therefore, the development of sustainable agro-biotechnologies is vital to increase crop yield and quality, reducing the negative impacts caused by intensive non-sustainable agricultural practices. In this way, the genetic and metabolic diversity of soil and plant microbiota in agro-ecosystems are a current and promising alternative to ensure global food security. Microbial communities play an important role in the improvement of soil fertility and plant development by enhancing plant growth and health through several direct and/or indirect mechanisms. Thus, the bio-augmentation of beneficial microbes into agro-ecosystems not only generates an increase in food production but also mitigates the economic, social, and environmental issues of intensive non-sustainable agriculture. In this way, the isolation, characterization, and exploitation of preserved beneficial microbes in microbial culture collections (MCC) is crucial for the ex situ maintenance of native soil microbial ecology focused on driving sustainable food production. This review aims to provide a critical analysis of the current and future role of global MCC on sustainable food security, as providers of a large number of beneficial microbial strains with multiple metabolic and genetic traits.
Collapse
|