1
|
Davies CS, Worsley SF, Maher KH, Komdeur J, Burke T, Dugdale HL, Richardson DS. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. MICROBIOME 2022; 10:41. [PMID: 35256003 PMCID: PMC8903650 DOI: 10.1186/s40168-022-01233-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The gut microbiome (GM) can influence many biological processes in the host, impacting its health and survival, but the GM can also be influenced by the host's traits. In vertebrates, Major Histocompatibility Complex (MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host's GM. Despite this-and the documented importance of both GM and MHC variation to individual fitness-few studies have investigated the association between the GM and MHC in the wild. RESULTS We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity was positively correlated with genome-wide heterozygosity and varied with host age and field period. CONCLUSIONS These results suggest that components of the host's immune system play a role in shaping the GM of wild animals. Host genotype-specifically MHC-I and to a lesser degree MHC-II variation-can modulate the GM, although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome could also influence selection on immune genes. As such, host-microbiome coevolution may play a role in maintaining functional immunogenetic variation within natural vertebrate populations. Video abstract.
Collapse
Affiliation(s)
- Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Kathryn H Maher
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles
| |
Collapse
|
2
|
Bebbington K, Kingma SA, Fairfield EA, Spurgin LG, Komdeur J, Richardson DS. Consequences of sibling rivalry vary across life in a passerine bird. Behav Ecol 2016; 28:407-418. [PMID: 29622918 PMCID: PMC5873840 DOI: 10.1093/beheco/arw167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 01/03/2023] Open
Abstract
Many studies have assessed the costs of sibling rivalry in systems where offspring always have competitors, but conclusions about sibling rivalry in these species are restricted to interpreting the cost of changes in the relative level of competition and are often complicated by the expression of potentially costly rivalry related traits. Additionally, the majority of studies focus on early-life sibling rivalry, but the costs of competition can also affect later-life performance. We test a suite of hypothesized immediate (early-life body mass, telomere length, and survival) and delayed (adult reproductive potential and lifespan) costs of sibling rivalry for offspring of differing competitive ability in Seychelles warblers, where most offspring are raised singly and hence competitor success can be compared to a competition-free scenario. Compared to those raised alone, all competing nestlings had lower body mass and weaker competitors experienced reduced survival. However, the stronger competitors appeared to have longer adult breeding tenures and lifespan than those raised alone. We propose that comparisons with competition-free groups, as well as detailed fitness measures across entire lifetimes, are needed to understand the evolution of sibling rivalry and thus individual reproductive strategy in wild systems.
Collapse
Affiliation(s)
- Kat Bebbington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Behavioural Ecology and Physiological Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700CC, Groningen, The Netherlands
| | - Sjouke A Kingma
- Behavioural Ecology and Physiological Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700CC, Groningen, The Netherlands
| | - Eleanor A Fairfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, UK, and
| | - Jan Komdeur
- Behavioural Ecology and Physiological Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700CC, Groningen, The Netherlands
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Nature Seychelles, PO Box 1310, Mahé, Republic of Seychelles
| |
Collapse
|
3
|
Wright DJ, Brouwer L, Mannarelli ME, Burke T, Komdeur J, Richardson DS. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age. Behav Ecol 2015; 27:295-303. [PMID: 26792973 PMCID: PMC4718175 DOI: 10.1093/beheco/arv150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.
Collapse
Affiliation(s)
- David J Wright
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK,; Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield S10 2TN, UK
| | - Lyanne Brouwer
- Evolution, Ecology & Genetics, Research School of Biology, The Australian National University , Canberra, Australian Capital Territory 0200 , Australia
| | - Maria-Elena Mannarelli
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield , Sheffield S10 2TN , UK
| | - Terry Burke
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield , Sheffield S10 2TN , UK
| | - Jan Komdeur
- Behavioural Ecology and Self-organization Group, Centre for Ecological and Evolutionary Studies, University of Groningen , PO Box 11103, 9700 CC Groningen , The Netherlands , and
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK,; Nature Seychelles, Centre for Environment and Education, The Sanctuary, PO Box 1310, Roche Caiman, Victoria, Mahé, Republic of Seychelles
| |
Collapse
|