1
|
Nickles KR, Hu Y, Majoris JE, Buston PM, Webb JF. Organization and Ontogeny of a Complex Lateral Line System in a Goby (Elacatinus lori), with a Consideration of Function and Ecology. COPEIA 2020. [DOI: 10.1643/cg-19-341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Katie R. Nickles
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881; (JFW) . Send reprint requests to JFW
| | - Yinan Hu
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881; (JFW) . Send reprint requests to JFW
| | - John E. Majoris
- Department of Biology and Marine Program, Boston University, 5 Cummington Street, Boston, Massachusetts 02215
| | - Peter M. Buston
- Department of Biology and Marine Program, Boston University, 5 Cummington Street, Boston, Massachusetts 02215
| | - Jacqueline F. Webb
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881; (JFW) . Send reprint requests to JFW
| |
Collapse
|
2
|
Green L, Havenhand JN, Kvarnemo C. Evidence of rapid adaptive trait change to local salinity in the sperm of an invasive fish. Evol Appl 2020; 13:533-544. [PMID: 32431734 PMCID: PMC7045711 DOI: 10.1111/eva.12859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 01/03/2023] Open
Abstract
Invasive species may quickly colonize novel environments, which could be attributed to both phenotypic plasticity and an ability to locally adapt. Reproductive traits are expected to be under strong selection when the new environment limits reproductive success of the invading species. This may be especially important for external fertilizers, which release sperm and eggs into the new environment. Despite adult tolerance to high salinity, the invasive fish Neogobius melanostomus (round goby) is absent from fully marine regions of the Baltic Sea, raising the possibility that its distribution is limited by tolerance during earlier life stages. Here, we investigate the hypothesis that the spread of N. melanostomus is limited by sperm function in novel salinities. We sampled sperm from two invasion fronts with higher and lower salinities in the Baltic Sea and tested them across a range of salinity levels. We found that sperm velocity and percentage of motile sperm declined in salinity levels higher and lower than those currently experienced by the Baltic Sea populations, with different performance curves for the two fronts. Sperm velocity also peaked closer to the home salinity conditions in each respective invasion front, with older localities showing an increased fit to local conditions. By calculating how the sperm velocity has changed over generations, we show this phenotypic shift to be in the range of other fish species under strong selection, indicating ongoing local adaptation or epigenetic acclimation to their novel environment. These results show that while immigrant reproductive dysfunction appears to at least partly limit the distribution of invasive N. melanostomus in the Baltic Sea, local adaptation to novel environments could enable future spread beyond their current boundaries.
Collapse
Affiliation(s)
- Leon Green
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
| | - Jonathan N. Havenhand
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgGothenburgSweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Xavier R, Mazzei R, Pérez-Losada M, Rosado D, Santos JL, Veríssimo A, Soares MC. A Risky Business? Habitat and Social Behavior Impact Skin and Gut Microbiomes in Caribbean Cleaning Gobies. Front Microbiol 2019; 10:716. [PMID: 31024495 PMCID: PMC6467100 DOI: 10.3389/fmicb.2019.00716] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
The broadstripe cleaning goby Elacatinus prochilos has two alternative ecotypes: sponge-dwellers, which live in large groups and feed mainly upon nematode parasites; and coral-dwellers, that live in small groups or in solitude and behave as cleaners. Recent studies focusing on the skin and gut microbiomes of tropical fish showed that microbial communities are influenced mainly by diet and host species. Here, we compare the skin and gut microbiomes of the Caribbean broadstripe cleaning goby E. prochilos alternative ecotypes (cleaners and non-cleaners) from Barbados and predict that different habitat use and behavior (cleaning vs. non-cleaning) will translate in different bacterial profiles between the two ecotypes. We found significant differences in both alpha- and beta-diversity of skin and gut microbiomes belonging to different ecotypes. Importantly, the skin microbiome of obligate cleaners showed greater intra-sample diversity and harbored a significantly higher prevalence of potential fish pathogens. Likewise, potential pathogens were also more prevalent in the gut of obligate cleaners. We suggest that habitat use, diet, but also direct contact with potential diseased clientele during cleaning, could be the cause for these patterns.
Collapse
Affiliation(s)
- Raquel Xavier
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Renata Mazzei
- Laboratoire d’Eco-Ethologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Marcos Pérez-Losada
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
- Computational Biology Institute, Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States
| | - Daniela Rosado
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Joana L. Santos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Marta C. Soares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Tornabene L, Robertson DR, Baldwin CC. Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean. Zookeys 2016:143-56. [PMID: 27408581 PMCID: PMC4926659 DOI: 10.3897/zookeys.596.8217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022] Open
Abstract
We describe a new species of goby, Varicuslacertasp. n., which was collected from a mesophotic reef at Curacao, southern Caribbean. The new species is the tenth species of Varicus, all of which occur below traditional SCUBA depths in the wider Caribbean area. Its placement in the genus Varicus is supported by a molecular phylogenetic analysis of three nuclear genes and the mitochondrial gene cytochrome b. In addition, the new species has one anal-fin pterygiophore inserted anterior to the first haemal spine, which distinguishes Varicus species from most species in the closely related and morphologically similar genus Psilotris. Varicuslacertasp. n. is distinguished from all other named species of Varicus by the absence of scales, having highly branched, feather-like pelvic-fin rays, and in its live coloration. We provide the cytochrome c oxidase I DNA barcode of the holotype and compare color patterns of all species of Varicus and Psilotris for which color photographs or illustrations are available. This study is one of several recent studies demonstrating the utility of manned submersibles in exploring the diversity of poorly studied but species-rich deep-reef habitats.
Collapse
Affiliation(s)
- Luke Tornabene
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, U.S.A
| | - D Ross Robertson
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Carole C Baldwin
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, U.S.A
| |
Collapse
|
5
|
Cowman PF. Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions. Front Genet 2014; 5:394. [PMID: 25431581 PMCID: PMC4230204 DOI: 10.3389/fgene.2014.00394] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the ocean's surface. Yet our understanding of how mechanistic processes have underpinned the generation of this diversity is limited. However, it has become clear that the biogeographic history of the marine tropics has played an important role in shaping the diversity of tropical reef fishes we see today. In the last decade, molecular phylogenies and age estimation techniques have provided a temporal framework in which the ancestral biogeographic origins of reef fish lineages have been inferred, but few have included fully sampled phylogenies or made inferences at a global scale. We are currently at a point where new sequencing technologies are accelerating the reconstruction and the resolution of the Fish Tree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics? Here, I review the literature concerning the evolutionary history of reef-associated fishes from a biogeographic perspective. I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns. By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages. Finally, I discuss questions that remain to be answered and new approaches to uncover the mechanistic processes that underpin the evolution of biodiversity on coral reefs.
Collapse
Affiliation(s)
- Peter F Cowman
- Department of Ecology and Evolutionary Biology, Yale University New Haven, CT, USA
| |
Collapse
|
6
|
Corrigan LJ, Horton T, Fotherby H, White TA, Hoelzel AR. Adaptive Evolution of Deep-Sea Amphipods from the Superfamily Lysiassanoidea in the North Atlantic. Evol Biol 2013. [DOI: 10.1007/s11692-013-9255-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Reece JS, Bowen BW, Joshi K, Goz V, Larson A. Phylogeography of two moray eels indicates high dispersal throughout the indo-pacific. J Hered 2010; 101:391-402. [PMID: 20375076 DOI: 10.1093/jhered/esq036] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reef fishes disperse primarily as oceanic "pelagic" larvae, and debate continues over the extent of this dispersal, with recent evidence for geographically restricted (closed) populations in some species. In contrast, moray eels have the longest pelagic larval stages among reef fishes, possibly providing opportunities to disperse over great distances. We test this prediction by measuring mitochondrial DNA (mtDNA) and nuclear DNA variation in 2 species of moray eels, Gymnothorax undulatus (N = 165) and G. flavimarginatus (N = 124), sampled at 14-15 locations across the Indo-Pacific. The mtDNA data comprise 632 bp of cytochrome b and 596 bp of cytochrome oxidase I. Nuclear markers include 2 recombination-activating loci (421 bp of RAG-1 and 754 bp of RAG-2). Analyses of molecular variance and Mantel tests indicate little or no genetic differentiation, and no isolation by distance, across 22 000 km of the Indo-Pacific. We estimate that mitochondrial genetic variation coalesces within the past about 2.3 million years (My) for G. flavimarginatus and within the past about 5.9 My for G. undulatus. Permutation tests of geographic distance on the mitochondrial haplotype networks indicate recent range expansions for some younger haplotypes (estimated within approximately 600 000 years) and episodic fragmentation of populations at times of low sea level. Our results support the predictions that the extended larval durations of moray eels enable ocean-wide genetic continuity of populations. This is the first phylogeographic survey of the moray eels, and morays are the first reef fishes known to be genetically homogeneous across the entire Indo-Pacific.
Collapse
Affiliation(s)
- Joshua S Reece
- Department of Biology, Washington University in Saint Louis, Box 1137, One Brookings Drive, Saint Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
8
|
Lettieri L, Cheney KL, Mazel CH, Boothe D, Marshall NJ, Streelman JT. Cleaner gobies evolve advertising stripes of higher contrast. J Exp Biol 2009; 212:2194-203. [DOI: 10.1242/jeb.025478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Elacatinus gobies of the Caribbean have undergone rapid speciation along ecological axes, and particular species from this genus act as`cleaners' that remove ectoparasites from larger coral reef fish, termed`clients'. Evolutionary shifts in habitat use, behavior and lateral body stripe colors differentiate cleaners from ancestral sponge-dwelling lineages. High-contrast stripe colors associated with cleaning behavior on coral reefs may have evolved as a signal of cleaning status. We asked whether cleaner gobies with blue stripes are more conspicuous than ancestral yellow- and green-stripe phenotypes to a diverse set of potential client visual systems in the tropical reef environment where cleaning stations are commonly observed. Using spectrophotometric measurements of cleaners with blue and yellow stripes and their F1 hybrid, we tested the contrast of each color stripe to both potential dichromatic and trichromatic reef fish visual systems, against typical coral and sponge microhabitat background colors. Blue stripes provide the highest average chromatic contrast across a range of possible microhabitat colors to the majority of fish visual systems tested. The contrast provided by yellow and hybrid green stripes are comparable across habitats to dichromatic visual systems. The green stripe is less contrasting than both blue and yellow to many potential trichromatic visual systems. We suggest that the evolution of blue stripes in Elacatinus gobies could be a result of natural selection for signals of high color contrast, driven by the sensory biases and visual systems of diverse reef fish clients.
Collapse
Affiliation(s)
- L. Lettieri
- School of Biology and Petit Institute for Bioengineering and Bioscience,Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - K. L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - C. H. Mazel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810,USA
| | - D. Boothe
- School of Biology and Petit Institute for Bioengineering and Bioscience,Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - N. J. Marshall
- Sensory Neurobiology Group, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - J. T. Streelman
- School of Biology and Petit Institute for Bioengineering and Bioscience,Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|