1
|
Talhinhas P, Carvalho R, Tavares S, Ribeiro T, Azinheira H, Ramos AP, Silva MDC, Monteiro M, Loureiro J, Morais-Cecílio L. Diploid Nuclei Occur throughout the Life Cycles of Pucciniales Fungi. Microbiol Spectr 2023; 11:e0153223. [PMID: 37289058 PMCID: PMC10433954 DOI: 10.1128/spectrum.01532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Within Eukaryotes, fungi are the typical representatives of haplontic life cycles. Basidiomycota fungi are dikaryotic in extensive parts of their life cycle, but diploid nuclei are known to form only in basidia. Among Basidiomycota, the Pucciniales are notorious for presenting the most complex life cycles, with high host specialization, and for their expanded genomes. Using cytogenomic (flow cytometry and cell sorting on propidium iodide-stained nuclei) and cytogenetic (FISH with rDNA probe) approaches, we report the widespread occurrence of replicating haploid and diploid nuclei (i.e., 1C, 2C and a small proportion of 4C nuclei) in diverse life cycle stages (pycnial, aecial, uredinial, and telial) of all 35 Pucciniales species analyzed, but not in sister taxa. These results suggest that the Pucciniales life cycle is distinct from any cycle known, i.e., neither haplontic, diplontic nor haplodiplontic, corroborating patchy and disregarded previous evidence. However, the biological basis and significance of this phenomenon remain undisclosed. IMPORTANCE Within Eukaryotes, fungi are the typical representatives of haplontic life cycles, contrasting with plants and animals. As such, fungi thus contain haploid nuclei throughout their life cycles, with sexual reproduction generating a single diploid cell upon karyogamy that immediately undergoes meiosis, thus resuming the haploid cycle. In this work, using cytogenetic and cytogenomic tools, we demonstrate that a vast group of fungi presents diploid nuclei throughout their life cycles, along with haploid nuclei, and that both types of nuclei replicate. Moreover, haploid nuclei are absent from urediniospores. The phenomenon appears to be transversal to the organisms in the order Pucciniales (rust fungi) and it does not occur in neighboring taxa, but a biological explanation or function for it remains elusive.
Collapse
Affiliation(s)
- Pedro Talhinhas
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Sílvia Tavares
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | - Teresa Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Azinheira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | - Ana Paula Ramos
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LPVVA, Laboratório de Patologia Vegetal “Veríssimo de Almeida”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Maria do Céu Silva
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | | | - João Loureiro
- CFE-Centre for Functional Ecology and Terra Associated Laboratory, Departamento de Ciências da Vida, Universidade de Coimbra, Coimbra, Portugal
| | - Leonor Morais-Cecílio
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Gerchen JF, Veltsos P, Pannell JR. Recurrent allopolyploidization, Y-chromosome introgression and the evolution of sexual systems in the plant genus Mercurialis. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210224. [PMID: 35306889 PMCID: PMC8935306 DOI: 10.1098/rstb.2021.0224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The plant genus Mercurialis includes dioecious, monoecious and androdioecious species (where males coexist with hermaphrodites). Its diversification involved reticulate evolution via hybridization and polyploidization. The Y chromosome of the diploid species Mercurialis annua shows only mild signs of degeneration. We used sequence variation at a Y-linked locus in several species and at multiple autosomal and pseudoautosomal loci to investigate the origin and evolution of the Y chromosome across the genus. Our study provides evidence for further cases of allopolyploid speciation. It also reveals that all lineages with separate sexes (with one possible exception) share the same ancestral Y chromosome. Surprisingly, males in androdioecious populations of hexaploid M. annua carry a Y chromosome that is not derived from either of its two putative progenitor lineages but from a more distantly related perennial dioecious lineage via introgression. These results throw new light on the evolution of sexual systems and polyploidy in Mercurialis and secure it as a promising model for further study of plant sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- J F Gerchen
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - P Veltsos
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - J R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Käfer J, Méndez M, Mousset S. Labile sex expression in angiosperm species with sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210216. [PMID: 35306891 PMCID: PMC8935303 DOI: 10.1098/rstb.2021.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
Here, we review the literature on sexual lability in dioecious angiosperm species with well-studied sex chromosomes. We distinguish three types of departures from strict dioecy, concerning either a minority of flowers in some individuals (leakiness) or the entire individual, which can constantly be bisexual or change sex. We found that for only four of the 22 species studied, reports of lability are lacking. The occurrence of lability is only weakly related to sex chromosome characteristics (number of sex-linked genes, age of the non-recombining region). These results contradict the naive idea that lability is an indication of the absence or the recent evolution of sex chromosomes, and thereby contribute to a growing consensus that sex chromosomes do not necessarily fix sex determination once and for all. We discuss some implications of these findings for the evolution of sex chromosomes, and suggest that more species with well-characterized lability should be studied with genomic data and tools. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, 69622 Villeurbanne, France
- CESAB–FRB, 34000 Montpellier, France
| | - Marcos Méndez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, 69622 Villeurbanne, France
| |
Collapse
|
4
|
Ashman TL, Kwok A, Husband BC. Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenet Genome Res 2013; 140:241-55. [PMID: 23838528 DOI: 10.1159/000353306] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The evolutionary transition from hermaphroditism (combined sexes) to dioecy (separate sexes) is associated with whole genome duplication (polyploidy) in several flowering plant genera. Moreover, there is evidence for transitions in the opposite direction, i.e. a loss of dioecy with an increase in ploidy. Here, we review evidence for these associations, synthesize previous ideas on the mechanism underlying the patterns and explore alternative pathways. Specifically, we examine potential ecological and genetic mechanisms, differentiated by whether ploidy or gender (functional sex expression of the plant) changes are the primary cause and whether the effect is direct or indirect. An analysis of 22 genera variable for both ploidy and gender indicates that gender monomorphism (hermaphroditism, monoecy) is more common among diploid than polyploid species, whereas gender dimorphism (dioecy, gynodioecy, subdioecy) is more frequent among polyploid species. The transition from diploid hermaphroditic to polyploid gender-dimorphic taxa may arise directly through changes in gender as a result of genome duplication through genomic rearrangements or homeologous recombination, or changes in gender may result in increased unreduced gamete production leading to polyploid formation. Alternatively, the transition may occur through the indirect effects of genome duplication on mating system and inbreeding depression, which favor selection for unisexuality, or habitat shifts associated with unisexuality may simultaneously cause increased unreduced gamete production. Novel mechanisms for transitions in the opposite direction (from dioecy to hermaphroditism with increase in ploidy) include disruption of genetic sex determination and the benefits of reproductive assurance. We highlight key questions requiring further attention and promising approaches for answering them and better clarifying the genesis of sexual system polyploidy associations. See also the sister article focusing on animals by Wertheim et al. in this themed issue.
Collapse
Affiliation(s)
- T-L Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260-3929, USA. tia1 @ pitt.edu
| | | | | |
Collapse
|