1
|
Wang X, Xue Y, Zhu H, Zhang J, Li M, Ge W, Luo Z, Yuan X, Zhang D, Ma W. Ferulic Acid in the Treatment of Papulopustular Rosacea: A Randomized Controlled Study. J Cosmet Dermatol 2024. [PMID: 39413013 DOI: 10.1111/jocd.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Rosacea is a chronic inflammatory skin disease characterized by flushing, erythema, papules, and pustules on the central face. It affects patient appearance and is noted for its chronicity, recurrence, and resistance to treatment. Effective rosacea treatment requires repairing the skin barrier, reducing inflammation, and promoting vasoconstriction. AIMS This study aims to evaluate the efficacy of topical ferulic acid in treating papulopustular rosacea and its impact on skin barrier function. METHODS Sixty patients with mild to moderate papulopustular rosacea were selected from the Department of Dermatology at the Affiliated Hospital of Shandong Second Medical University between January 2023 and December 2023. Patients were randomly assigned to either a control group or an observation group, with 30 patients in each group. The observation group applied ferulic acid solution to the affected areas, while the control group used normal saline, both twice daily for 6 weeks. Both groups also received 0.1 g doxycycline hydrochloride tablets orally once daily. Skin lesions and skin barrier function were assessed using VISIA imaging and self-rating scales before and during treatment, and adverse reactions were recorded. RESULTS After 6 weeks, both skin lesion assessments and self-assessment scores improved significantly from baseline, with greater improvement in the observation group compared to the control group (p < 0.05). Indicators of skin barrier function and VISIA imaging results demonstrated the efficacy of ferulic acid in treating rosacea. The total effective rate was significantly higher in the observation group (80.00%) compared to the control group (63.33%) (p < 0.05). In the observation group, nine patients (30.00%) experienced a greasy sensation initially, one patient (3.33%) reported tingling and itching, and no serious adverse reactions were observed. CONCLUSIONS Ferulic acid is effective as an adjuvant treatment for papulopustular rosacea, significantly improving skin lesions and repairing skin barrier function with minimal adverse reactions.
Collapse
Affiliation(s)
- Xing Wang
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yonghong Xue
- Yantai Xianse Trading Co., Ltd., Yantai, Shandong, China
| | - Hongzi Zhu
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jingjie Zhang
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Meiling Li
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Wenxiu Ge
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Zengxiang Luo
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiangfeng Yuan
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Dong Zhang
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Zhang K, Jiang L, Fu C, Huang J, Wen Y, Zhou S, Huang J, Chen J, Zeng Q. Identification of dietary factors that impact the gut microbiota associated with vitiligo: A Mendelian randomization study and meta-analysis. Exp Dermatol 2024; 33:e15176. [PMID: 39304334 DOI: 10.1111/exd.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Previous observational studies have suggested that gut microbiota might be associated with vitiligo. However, owing to the limitations in observational studies of reverse causality and confounders, it remains unclear that whether and how the causal relationships exist. The results suggested that pylum.Bacteroidetes, family.BacteroidalesS24.7, genus.LachnospiraceaeND3007, genus.Marvinbryantia are protective factors for vitiligo. Conversely, family.Lachnospiraceae, order.Burkholderiales, genus.Adlercreutzia, genus.Catenibacterium and genus.Lachnospira are risk factors for vitiligo. In addition, the causative connection between dietary factors and the gut microbiota associated with vitiligo was also investigated. The results revealed that 'alcohol intake versus 10 years pervious' results in a reduction in the abundance of genus.Lachnospiraceae ND3007 and family.BacteroidalesS24.7, bread intake leads to a reduction of genus.Marvinbryantia, 'average weekly red wine intake' is linked to a decrease in the abundance of order.Burkholderiales, tea intake is associated with an augmentation in the abundance of genus.Catenibacterium, salad/raw vegetable intake elevates the abundance of order.Burkholderiales. In summary, this Mendelian randomization study substantiates potential causal effects of gut microbiota on vitiligo. Modulating the gut microbiota through regulating dietary composition may be a novel strategy for preventing vitiligo.
Collapse
Affiliation(s)
- Keyi Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangfeng Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqing Wen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Liao JF, Jiang XM, Xie Z, Lei H, Luo J, Lv Y, Liu G, Mao Y, Song SY, Wang Y. Exploring the efficacy of laser speckle contrast imaging in the stratified diagnosis of rosacea: a quantitative analysis of facial blood flow dynamics across varied regions. Front Immunol 2024; 15:1419005. [PMID: 39247187 PMCID: PMC11377348 DOI: 10.3389/fimmu.2024.1419005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Background Rosacea has a high incidence, significantly impacts quality of life, and lacks sufficient diagnostic techniques. This study aimed to investigate the feasibility of laser speckle contrast imaging (LSCI) for measuring facial blood perfusion in patients with rosacea and to identify differences in blood flow among various facial regions associated with different rosacea subtypes. Methods From June to December 2023, 45 patients were recruited, with 9 excluded, leaving 36 subjects: 12 with erythematotelangiectatic rosacea (ETR), 12 with papulopustular rosacea (PPR), and 12 healthy controls. The Think View multispectral imaging analyzer assessed inflammation via gray reading values across the full face and five facial areas: forehead, nose, cheeks, and chin. LSCI measured and analyzed blood perfusion in the same areas. Plasma biomarkers interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) were tested in different groups. Results Both ETR and PPR groups showed increased average blood perfusion and facial inflammation intensity by gray values compared to controls, with statistically significant differences. Average blood perfusion of ETR and PPR groups showed increased values in the forehead, cheeks, and nose, compared to controls, and the values in the cheeks were statistically different between ETR and PPR. The facial inflammation intensity of the ETR group showed increased values in the forehead and cheeks, and the PPR group showed increased gray values in the forehead, cheeks, nose, and chin compared to controls, and the values for the cheeks, nose, and chin were statistically significantly different between ETR and PPR. Plasma biomarkers IL-6, IL-1β, and TNF-α were significantly elevated in both ETR and PPR groups compared to controls. Conclusion LSCI is a valuable, non-invasive tool for assessing blood flow dynamics in rosacea, providing a data foundation for clinical research. Different rosacea subtypes exhibit distinct lesion distribution and blood flow patterns, and both ETR and PPR could affect all facial areas, particularly the cheeks in ETR and the forehead, nose, and chin in PPR.
Collapse
Affiliation(s)
- Jin-Feng Liao
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Xue-Mei Jiang
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Zhen Xie
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Hua Lei
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Juan Luo
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Yu Lv
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Liu
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Yujie Mao
- Department of Dermatology, Sichuan Provincial Peoples Hospital, University of Electronic. Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Klepinowski T, Skonieczna-Żydecka K, Łoniewski I, Pettersson SD, Wierzbicka-Woś A, Kaczmarczyk M, Palma J, Sawicki M, Taterra D, Poncyljusz W, Alshafai NS, Stachowska E, Ogilvy CS, Sagan L. A prospective pilot study of gut microbiome in cerebral vasospasm and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Sci Rep 2024; 14:17617. [PMID: 39080476 PMCID: PMC11289281 DOI: 10.1038/s41598-024-68722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
A recent systematic review indicated that gut-microbiota-brain axis contributes to growth and rupture of intracranial aneurysms. However, gaps were detected in the role of intestinal microbiome in cerebral vasospasm (CVS) after aneurysmal subarachnoid hemorrhage (aSAH). This is the first pilot study aiming to test study feasibility and identify differences in gut microbiota between subjects with and without CVS following aSAH. A prospective nested case-control pilot study with 1:1 matching was conducted recruiting subjects with aSAH: cases with CVS; and controls without CVS based on the clinical picture and structured bedside transcranial Doppler (TCD). Fecal samples for microbiota analyses by means of 16S rRNA gene amplicon sequencing were collected within the first 96 h after ictus. Operational taxonomic unit tables were constructed, diversity metrics calculated, phylogenetic trees built, and differential abundance analysis (DAA) performed. At baseline, the groups did not differ significantly in basic demographic and aneurysm-related characteristics (p > 0.05). Alpha-diversity (richness and Shannon Index) was significantly reduced in cases of middle cerebral artery (MCA) vasospasm (p < 0.05). In DAA, relative abundance of genus Acidaminococcus was associated with MCA vasospasm (p = 0.00013). Two butyrate-producing genera, Intestinimonas and Butyricimonas, as well as [Clostridium] innocuum group had the strongest negative correlation with the mean blood flow velocity in anterior cerebral arteries (p < 0.01; rho = - 0.63; - 0.57, and - 0.57, respectively). In total, 16 gut microbial genera were identified to correlate with TCD parameters, and two intestinal genera correlated with outcome upon discharge. In this pilot study, we prove study feasibility and present the first preliminary evidence of gut microbiome signature associating with CVS as a significant cause of stroke in subjects with aSAH.
Collapse
Affiliation(s)
- Tomasz Klepinowski
- Department of Neurosurgery, Pomeranian Medical University Hospital no. 1, Unii Lubelskiej 1, 71-252, Szczecin, Poland.
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Samuel D Pettersson
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anna Wierzbicka-Woś
- Research and Development Centre, Sanprobi sp. z o.o. sp. K, Kurza Stopka 5/c, 70-535, Szczecin, Poland
| | - Mariusz Kaczmarczyk
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
- Research and Development Centre, Sanprobi sp. z o.o. sp. K, Kurza Stopka 5/c, 70-535, Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Marcin Sawicki
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin Hospital no. 1, Szczecin, Poland
| | - Dominik Taterra
- Department of Orthopedics and Rehabilitation, Jagiellonian University Medical College, Zakopane, Poland
| | - Wojciech Poncyljusz
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin Hospital no. 1, Szczecin, Poland
| | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 70-204, Szczecin, Poland
| | - Christopher S Ogilvy
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University Hospital no. 1, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| |
Collapse
|
5
|
Shucheng H, Li J, Liu YL, Chen X, Jiang X. Causal relationship between gut microbiota and pathological scars: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1405097. [PMID: 39015789 PMCID: PMC11250559 DOI: 10.3389/fmed.2024.1405097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Pathological scars, including keloids and hypertrophic scars, represent a significant dermatological challenge, and emerging evidence suggests a potential role for the gut microbiota in this process. Methods Utilizing a two-sample Mendelian randomization (MR) methodology, this study meticulously analyzed data from genome-wide association studies (GWASs) relevant to the gut microbiota, keloids, and hypertrophic scars. The integrity and reliability of the results were rigorously evaluated through sensitivity, heterogeneity, pleiotropy, and directionality analyses. Results By employing inverse variance weighted (IVW) method, our findings revealed a causal influence of five bacterial taxa on keloid formation: class Melainabacteria, class Negativicutes, order Selenomonadales, family XIII, and genus Coprococcus2. Seven gut microbiota have been identified as having causal relationships with hypertrophic scars: class Alphaproteobacteria, family Clostridiaceae1, family Desulfovibrionaceae, genus Eubacterium coprostanoligenes group, genus Eubacterium fissicatena group, genus Erysipelotrichaceae UCG003 and genus Subdoligranulum. Additional sensitivity analyses further validated the robustness of the associations above. Conclusion Overall, our MR analysis supports the hypothesis that gut microbiota is causally linked to pathological scar formation, providing pivotal insights for future mechanistic and clinical research in this domain.
Collapse
Affiliation(s)
- Huidi Shucheng
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yu-ling Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Li D, Luo ZB, Zhu J, Wang JX, Jin ZY, Qi S, Jin M, Quan LH. Ginsenoside F2-Mediated Intestinal Microbiota and Its Metabolite Propionic Acid Positively Impact the Gut-Skin Axis in Atopic Dermatitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:339-350. [PMID: 38150707 DOI: 10.1021/acs.jafc.3c06015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Atopic dermatitis (AD) is a complex inflammatory skin disease induced by multiple factors. AD can also cause intestinal inflammation and disorders of the gut microbiota. Ginseng is a kind of edible and medicinal plant; its main active components are ginsenosides. Ginsenosides have a variety of anti-inflammatory effects and regulate the gut microbiota; however, their role in AD and the underlying mechanisms are unclear. In this study, we found that intragastric administration of ginsenoside F2 improved AD-like skin symptoms and reduced inflammatory cell infiltration, serum immunoglobulin E levels, and mRNA expression of inflammatory cytokines in AD mice. 16s rRNA sequencing analysis showed that ginsenoside F2 altered the intestinal microbiota structure and enriched the short-chain fatty acid-producing microbiota in AD mice. Metabolomic analysis revealed that ginsenoside F2 significantly increased the propionic acid (Pa) content of feces and serum in AD mice, which was positively correlated with significant enrichment of Parabacteroides goldsteinii and Lactobacillus plantarum in the intestines. Pa inhibits inflammatory responses in the gut and skin of AD mice through the G-protein-coupled receptor43/NF-κB pathway, thereby improving skin AD symptoms. These results revealed, for the first time, the mechanism by which ginsenoside F2 improves AD through the Pa (a metabolite of intestinal microbiota)-gut-skin axis.
Collapse
Affiliation(s)
- Dongxu Li
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Zhao-Bo Luo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jun Zhu
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Shaobo Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Meiling Jin
- Department of Pharmacology, College of Medicine, Yanbian University, Yanji 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
7
|
Jiminez V, Yusuf N. Bacterial Metabolites and Inflammatory Skin Diseases. Metabolites 2023; 13:952. [PMID: 37623895 PMCID: PMC10456496 DOI: 10.3390/metabo13080952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiome and gut-skin axis are popular areas of interest in recent years concerning inflammatory skin diseases. While many bacterial species have been associated with commensalism of both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated, have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
9
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|