1
|
Liu L, Liu B, Li L, Li Y, Zhou X, Li Q. Impact of Antimicrobial Stewardship and Infection Prevention and Control Programmes on Antibiotic Usage and A. baumannii resistance: A 2016-2023 Multicentre Prospective Study. Infect Drug Resist 2025; 18:679-692. [PMID: 39926172 PMCID: PMC11806701 DOI: 10.2147/idr.s505133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Objective This study assesses the efficacy of antimicrobial stewardship (AMS) and infection prevention and control programmes (IPCP) in guiding the use of antibiotics and the control of A. baumannii (AB) resistance at multiple medical centres. Methods We evaluated the effectiveness of the policy on antibiotic consumption and AB resistance by determining the relationship between the defined daily doses (DDD) for antibiotics - or alcohol-based hand gel (ABHG) consumption - and the incidence of carbapenem-resistant AB (CR-AB), multidrug-resistant AB (MDR-AB) and extensively drug-resistant AB (XDR-AB) at two medical centers from 2016-2023. Results In total, 4057 AB isolates were collected; 64.95% of the AB isolates were CR, 59.48% were MDR and 1.41% were XDR. The major categories of the AB clinical strains collected were extracted primarily from patients' respiratory tract specimens, the ICU wards and patients over 65 years old, accounting for 76.98%, 67.98% and 63.72%, respectively. The incidence of CR-AB, MDR-AB and XDR-AB based on AMS and IPCP measures ranged from 70.04% to 58.42% (P<0.0001), 64.26% to 52.16% (P<0.0001) and 2.27% to 0.60% (P=0.0167), respectively. The DDD of total antibiotics administered per 1000 patient days (PD) decreased significantly from 51.25±4.22 to 40.92±2.48 (P<0.0001), and ABHG consumption per 1000 PD increased significantly from 5.25±0.98 to 13.51±5.12 (P<0.0001). We found a statistically significant positive correlation between the DDD of antibiotic consumption and the incidence of CR-AB, MDR-AB and XDR-AB (r=0.9755 and P<0.0001, r=0.9571 and P=0.0002, r=0.9230 and p=0.0011, respectively). In addition, a statistically negative correlation was found between ABHG consumption and the incidence of CR-AB, MDR-AB, and XDR-AB (r=-0.9473 and P=0.0004, r=-0.9123 and P=0.0016, r=-0.9138 and P=0.0015, respectively). Conclusion Comprehensive AMS and IPCP intervention measures can successfully achieve a sustained amelioration in the resistance and transmission of CR-AB, MDR-AB and XDR-AB, which are regarding potential applicability to other hospitals.
Collapse
Affiliation(s)
- Lei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, People’s Republic of China
| | - Bin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, People’s Republic of China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, People’s Republic of China
| | - Yu Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, People’s Republic of China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, People’s Republic of China
| |
Collapse
|
2
|
Ciftci IH, Kahraman Kilbas EP, Kilbas I. A Systematic Review and Meta-Analysis of Molecular Characteristics on Colistin Resistance of Acinetobacter baumannii. Diagnostics (Basel) 2024; 14:2599. [PMID: 39594265 PMCID: PMC11592941 DOI: 10.3390/diagnostics14222599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND This study aimed to determine the molecular epidemiology of colistin-resistant A. baumannii in the last ten years and the frequency of gene regions related to pathogenesis, to compare the methods used to detect genes, and to confirm colistin resistance. METHODS This meta-analysis study was conducted under Preferred Reporting Items for Systematic Reviews and Meta-Analysis Guidelines. In the meta-analysis, research articles published in English and Turkish in electronic databases between January 2012 and November 2023 were examined. International Business Machines (IBM) Statistical Package for the Social Sciences (SPSS) Statistics for Macbook (Version 25.0. Armonk, NY, USA) was used for statistical analysis. The Comprehensive Meta-Analysis (CMA) (Version 3.0. Biostat, NJ, USA) program was used for heterogeneity assessment in the articles included in the meta-analysis. RESULTS After evaluating the studies according to the elimination criteria, 18 original articles were included. Among colistin-resistant strains, blaOXA-51 positivity was 243 (19.61%), blaOXA-23 was 113 (9.12%), blaOXA-58 was 7 (0.56%), blaOXA-143 was 15 (1.21%), and blaOXA-72 was seen in two (0.16%) strains. The positivity rates of pmrA, pmrB, and pmrC were found to be 22 (1.77%), 26 (2.09%), and 6 (0.48%). The mcr-1 rate was found to be 91 (7.34%), the mcr-2 rate was 78 (6.29%), and the mcr-3 rate was 82 (6.61%). CONCLUSIONS The colistin resistance rate in our study was found to be high. However, only some research articles report and/or investigate more than one resistance gene together. Additionally, it may be challenging to explain colistin resistance solely by expressing resistance genes without discussing accompanying components such as efflux pumps, virulence factors, etc.
Collapse
Affiliation(s)
- Ihsan Hakki Ciftci
- Department of Medical Microbiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey
| | - Elmas Pinar Kahraman Kilbas
- Department of Medical Laboratory Techniques, Health Services Vocational School, Fenerbahce University, 34758 Istanbul, Turkey;
| | - Imdat Kilbas
- Medical Microbiology Doctorate Program, Institute of Health Sciences, Istanbul University, 34093 Istanbul, Turkey;
| |
Collapse
|
3
|
Gharaibeh MH, Abandeh YM, Elnasser ZA, Lafi SQ, Obeidat HM, Khanfar MA. Multi-drug Resistant Acinetobacter baumannii: Phenotypic and Genotypic Resistance Profiles and the Associated Risk Factors in Teaching Hospital in Jordan. J Infect Public Health 2024; 17:543-550. [PMID: 38367568 DOI: 10.1016/j.jiph.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND This study aimed to determine the prevalence of Antimicrobial Resistance Genes (ARGs), with a focus on colistin resistance in clinical A. baumannii, as well as the risk factors associated with A. baumannii infection in Jordanian patients. METHODS In total, 150 A. baumannii isolates were obtained from patients at a teaching hospital. The isolates were tested for antimicrobial susceptibility using disc diffusion and microdilution methods. PCR amplification was used to detect ARGs, and statistical analysis was conducted to evaluate the influence of identified risk factors on the ARGs acquisition. RESULTS More than 90% of A. baumannii isolates were resistant to monobactam, carbapenem, cephalosporins, Fluoroquinolones, penicillin, and β-lactam agents. Moreover, 20.6% of the isolates (n = 31) were colistin-resistant. Several ARGs were also detected in A. baumannii isolates. Univariate analysis indicated that risk factors and the carriage of ARGs were significantly associated P ≤ (0.05) with gender, invasive devices, immunodeficiency, systemic diseases, tumors, and covid-19. Logistic regression analysis indicated seven risk factors, and three protective factors were associated with the ARGs (armA, strA, and strB) P ≤ (0.05). In contrast, tetB and TEM were associated with 2 risk factors each P ≤ (0.05). CONCLUSION Our study indicates a high prevalence of MDR A. baumannii infections in ICU patients, as well as describing the case of colistin-resistant A. baumannii for the first time in Jordan. Additionally, the risk factors associated with ARGs-producing A. baumannii infections among ICU patients suggest a rapid emergence and spread of MDR A. baumannii without adequate surveillance and control measures.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan.
| | - Yaman M Abandeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan
| | - Ziad A Elnasser
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Shawkat Q Lafi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan
| | - Haneen M Obeidat
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Malak A Khanfar
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
4
|
Sánchez-León I, Pérez-Nadales E, Marín-Sanz JA, García-Martínez T, Martínez-Martínez L. Heteroresistance to colistin in wild-type Klebsiella pneumoniae isolates from clinical origin. Microbiol Spectr 2023; 11:e0223823. [PMID: 37962370 PMCID: PMC10714954 DOI: 10.1128/spectrum.02238-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Colistin is one of the last remaining therapeutic options for dealing with Enterobacteriaceae. Unfortunately, heteroresistance to colistin is also rapidly increasing. We described the prevalence of colistin heteroresistance in a variety of wild-type strains of Klebsiella pneumoniae and the evolution of these strains with colistin heteroresistance to a resistant phenotype after colistin exposure and withdrawal. Resistant mutants were characterized at the molecular level, and numerous mutations in genes related to lipopolysaccharide formation were observed. In colistin-treated patients, the evolution of K. pneumoniae heteroresistance to resistance phenotype could lead to higher rates of therapeutic failure.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Marín-Sanz
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Computer Sciences, University of Cordoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
5
|
Wen Z, Liu F, Zhang P, Wei Y, Shi Y, Zheng J, Li G, Yu Z, Xu Z, Deng Q, Chen Z. In vitro activity and adaptation strategies of eravacycline in clinical Enterococcus faecium isolates from China. J Antibiot (Tokyo) 2022; 75:498-508. [PMID: 35896611 DOI: 10.1038/s41429-022-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022]
Abstract
Eravacycline (Erava) is a synthetic fluorocycline with potent antimicrobial activity against a wide range of Gram-positive bacteria. This study aimed to investigate the in vitro antimicrobial activity and resistance mechanism of Erava in clinical E. faecium isolates from China. Erava minimum inhibitory concentrations (MICs) against clinical E. faecium isolates-including those resistant to linezolid (LZD) or harboring the tetracycline (Tet) resistance genes was ≤0.25 mg l-1. Moreover, our data indicated that clinical isolates of E. faecium with Erava MIC 0.25 mg l-1 were predominantly shown to belong to Sequence-type 78 (ST78) and ST80. The prevalence of Erava heteroresistance in clinical E. faecium strain was 2.46% (3/122). The increased Erava MIC values of heteroresistance-derived E. faecium clones could be significantly reduced by efflux pump inhibitors (EPIs). Furthermore, comparative proteomics results showed that efflux pumps lmrA, mdlA, and mdlB contributed significantly to the acquisition of Erava resistance in E. faecium. In addition, a genetic mutation in 16 S rRNA (G190A) were detected in resistant E. faecium isolates induced by Erava. In summary, Erava exhibits potent in vitro antimicrobial activity against E. faecium, but mutation of Tet target sites and elevated expression of efflux pumps under Erava selection results in Erava resistance.
Collapse
Affiliation(s)
- Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Fangfang Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Peixing Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Ying Wei
- Heilongjiang Medical Service Management Evaluation Center, Harbin, Heilongjiang, 150031, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Guiqiu Li
- Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.,The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhicao Xu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
6
|
Colistin Resistance Onset Strategies and Genomic Mosaicism in Clinical Acinetobacter baumannii Lineages. Pathogens 2021; 10:pathogens10111516. [PMID: 34832671 PMCID: PMC8623500 DOI: 10.3390/pathogens10111516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of multidrug-resistant Gram-negative infections is based on colistin. As result, COL-resistance (COL-R) can develop and spread. In Acinetobacter baumannii, a crucial step is to understand COL-R onset and stability, still far to be elucidated. COL-R phenotypic stability, onset modalities, and phylogenomics were investigated in a clinical A. baumannii sample showing a COL resistant (COLR) phenotype at first isolation. COL-R was confirmed by Minimum-Inhibitory-Concentrations as well as investigated by Resistance-Induction assays and Population-Analysis-Profiles (PAPs) to determine: (i) stability; (ii) inducibility; (iii) heteroresistance. Genomics was performed by Mi-Seq Whole-Genome-Sequencing, Phylogenesis, and Genomic Epidemiology by bioinformatics. COLRA. baumannii were subdivided as follows: (i) 3 A. baumannii with stable and high COL MICs defining the “homogeneous-resistant” onset phenotype; (ii) 6 A. baumannii with variable and lower COL MICs displaying a “COL-inducible” onset phenotype responsible for adaptive-resistance or a “subpopulation” onset phenotype responsible for COL-heteroresistance. COL-R stability and onset strategies were not uniquely linked to the amount of LPS and cell envelope charge. Phylogenomics categorized 3 lineages clustering stable and/or unstable COL-R phenotypes with increasing genomic complexity. Likewise, different nsSNP profiling in genes already associated with COL-R marked the stable and/or unstable COL-R phenotypes. Our investigation finds out that A. baumannii can range through unstable or stable COLR phenotypes emerging via different “onset strategies” within phylogenetic lineages displaying increasing genomic mosaicism.
Collapse
|
7
|
Naeimi Mazraeh F, Hasani A, Sadeghi J, Samadi Kafil H, Soroush Barhaghi MH, Yeganeh Sefidan F, Rishi Sharabiani H, Hematyar Y, Ahangarzadeh Rezaee M. High frequency of blaPER-1 gene in clinical strains of Acinetobacter baumannii and its association with quorum sensing and virulence factors. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chen L, Yu K, Chen L, Zheng X, Huang N, Lin Y, Jia H, Liao W, Cao J, Zhou T. Synergistic Activity and Biofilm Formation Effect of Colistin Combined with PFK-158 Against Colistin-Resistant Gram-Negative Bacteria. Infect Drug Resist 2021; 14:2143-2154. [PMID: 34135604 PMCID: PMC8200155 DOI: 10.2147/idr.s309912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The emergence of colistin resistance among Gram-negative bacteria (GNB) poses a serious public health threat. Therefore, it is necessary to enhance the antibacterial activity of colistin through the combination with other drugs. In this study, we demonstrated the synergistic activity and the possible synergy mechanism of colistin with PFK-158 against colistin-resistant GNB, including non-fermenting bacteria and Enterobacteriaceae. Patients and Methods Thirty-one colistin-resistant GNB, including Pseudomonas aeruginosa (n = 9), Acinetobacter baumannii (n = 5), Escherichia coli (n = 8) and Klebsiella pneumoniae (n = 9), were collected as the experimental strains and the minimum inhibitory concentrations (MICs) of colistin, other routine antimicrobial agents and PFK-158 against all strains were determined by the broth microdilution method. The synergistic activity of colistin with PFK-158 was assessed by the checkerboard assay and time-kill assay. The biofilm formation assay and scanning electron microscopy were used to demonstrate the biofilm formation effect of colistin with PFK-158 against colistin-resistant GNB. Results The results of the checkerboard assay showed that when colistin was used in combination with PFK-158, synergistic activity was observed against the 31 colistin-resistant GNB. The time-kill assay presented a significant killing activity of colistin with PFK-158 against the 9 colistin-resistant GNB selected randomly, including Pseudomonas aeruginosa (n = 6), Acinetobacter baumannii (n = 1), Escherichia coli (n = 1), and Klebsiella pneumoniae (n = 1). The biofilm formation assay and scanning electron microscopjihy showed that colistin with PFK-158 can effectively suppress the formation of biofilm and reduce the cell arrangement density of biofilm against most experimental strains. Conclusion The results of the performed experiments suggest that the combination of colistin and PFK-158 may be a potential new choice as a new antibiofilm group for the treatment of infections caused by the colistin-resistant GNB.
Collapse
Affiliation(s)
- Liqiong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Kaihang Yu
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
9
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Fam NS, Gamal D, Mohamed SH, Wasfy RM, Soliman MS, El-Kholy AA, Higgins PG. Molecular Characterization of Carbapenem/Colistin-Resistant Acinetobacter baumannii Clinical Isolates from Egypt by Whole-Genome Sequencing. Infect Drug Resist 2020; 13:4487-4493. [PMID: 33364795 PMCID: PMC7751577 DOI: 10.2147/idr.s288865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The rise of carbapenem-resistant A. baumannii (CRAB) is considered a public health problem limiting the treatment options. Our current work studied the emergence and mechanisms of colistin-resistance among CRAB isolates in Egypt. MATERIALS AND METHODS Seventeen clinically recovered A. baumannii were identified and screened for their antimicrobial susceptibilities using VITEK-2 system. Colistin susceptibility was evaluated using broth microdilution, and characterization of carbapenem/colistin resistance determinants was performed using whole-genome sequencing (Illumina MiSeq). RESULTS About 52.9% (9/17) were colistin-resistant. PCR results revealed that all isolates carried bla OXA-51-like genes, bla OXA-23-like was detected in 82.3% (14/17) and bla NDM in 23.5% (4/17). Two isolates harboured bla GES-35 and bla OXA-23. Furthermore, genome analysis of seven isolates revealed six belonged to international clone 2 (IC2) while the remaining isolate was a singleton (ST158), representing a clone circulating in Mediterranean/Middle Eastern countries. CONCLUSION The emergence and high incidence of colistin-resistance among CRAB clinical isolates in Egypt are alarming because it further limits therapy options and requires prudent antimicrobial stewardship and stringent infection control measures. Whole-genome sequence analyses suggest that the resistance to colistin was associated with multiple mutations in the pmrCAB genes. The high incidence of the high-risk lineage IC2 harbouring bla OXA-23-like as well as bla NDM is also of concern.
Collapse
Affiliation(s)
- Nevine S Fam
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Doaa Gamal
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Sara H Mohamed
- Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Reham M Wasfy
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - May S Soliman
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amani A El-Kholy
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne50935, Germany
| |
Collapse
|
11
|
Karakonstantis S, Saridakis I. Colistin heteroresistance in Acinetobacter spp.: systematic review and meta-analysis of the prevalence and discussion of the mechanisms and potential therapeutic implications. Int J Antimicrob Agents 2020; 56:106065. [PMID: 32599229 DOI: 10.1016/j.ijantimicag.2020.106065] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/20/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Colistin is one of the few remaining options for carbapenem-resistant Acinetobacter baumannii (A. baumannii); however, emergence of resistance from heteroresistant populations is possible. This review aimed to systematically search and consolidate the literature on the prevalence, mechanisms and therapeutic implications of colistin heteroresistance in Acinetobacter spp. METHODS A systematic search was conducted in PubMed and Scopus. The pooled prevalence of colistin heteroresistance was calculated using meta-analysis of proportions with the Freeman-Tukey transformation and the random-effects (DerSimonian and Laird) method. RESULTS Based on 15 studies the prevalence of colistin heteroresistance was 33% (95% CI 16-53%) but considerable heterogeneity was observed (I2 = 96%, P < 0.001). Prior exposure to colistin was associated with a higher proportion of resistant subpopulations. Colistin heteroresistance may result from chromosomal mutations in resistant subpopulations (predominantly in PmrAB and lpx genes) resulting in lipopolysaccharide modification or loss, or overexpression of efflux pumps. No dosage scheme of colistin monotherapy can prevent the emergence of resistant subpopulations in vitro, but few studies have reported in vivo emergence of resistance from heteroresistant A. baumannii during treatment, and studies examining the correlation between heteroresistance and clinical/microbiological outcomes are lacking. Several colistin-based combinations have been shown in vitro to prevent the emergence of the resistant subpopulations but none have been translated so far into clinical benefit. Reasons for this discrepancy are discussed. CONCLUSIONS Colistin heteroresistance was common but highly variable between studies. The impact of colistin heteroresistance (frequency of emergent resistance during treatment and correlation with treatment outcomes) requires further study.
Collapse
Affiliation(s)
- Stamatis Karakonstantis
- School of Medicine, University of Crete, Heraklion, Crete, Greece; Internal Medicine Department, General Hospital of Heraklion Venizeleio, Heraklion, Crete, Greece.
| | - Ioannis Saridakis
- Internal Medicine Department, General Hospital of Heraklion Venizeleio, Heraklion, Crete, Greece
| |
Collapse
|
12
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|