1
|
Preeti, Sambhakar S, Malik R, Bhatia S, Harrasi AA, Saharan R, Aggarwal G, Kumar S, Sehrawat R, Rani C. Lipid Horizons: Recent Advances and Future Prospects in LBDDS for Oral Administration of Antihypertensive Agents. Int J Hypertens 2024; 2024:2430147. [PMID: 38410720 PMCID: PMC10896658 DOI: 10.1155/2024/2430147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
- SRM Modinagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Maharishi Markandeshwar Deemed to be University, Mullana, Ambala 133203, Haryana, India
| | - Geeta Aggarwal
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra 136132, Haryana, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| |
Collapse
|
2
|
Story D, Aminoroaya A, Skelton Z, Kumari M, Zhang Y, Smith BR. Nanoparticle-Based Therapies in Hypertension. Hypertension 2023; 80:2506-2514. [PMID: 37767725 PMCID: PMC10651274 DOI: 10.1161/hypertensionaha.123.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nearly 1.4 billion people worldwide suffer from arterial hypertension, a significant risk factor for cardiovascular disease which is now the leading cause of death. Despite numerous drugs designed to treat hypertension, only ≈14% of hypertensive individuals have their blood pressure under control. A critical factor negatively impacting the efficacy of available treatments is their poor bioavailability. This leads to increased dosing requirements which can result in more side effects, resulting in patient noncompliance. A recent solution to improve dosing and bioavailability issues has been to incorporate drugs into nanoparticle carriers, with over 50 nanodrugs currently on the market across all diseases, and another 51 currently in clinical trials. Given their ability to improve solubility and bioavailability, nanoparticles may offer significant advantages in the formulation of antihypertensives to overcome pharmacokinetic shortcomings. To date, however, no antihypertensive nanoformulations have been clinically approved. This review assesses in vivo study data from preclinical antihypertensive nanoformulation development and testing. Combined, the results of these studies suggest nanoformulation of antihypertensive drugs may be a promising solution to overcome the poor efficacy of currently available antihypertensives, and with further advances has the potential to open paths for new substances that have heretofore been clinically unrealistic due to poor bioavailability.
Collapse
Affiliation(s)
- Darren Story
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Alireza Aminoroaya
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| | - Zak Skelton
- College of Osteopathic Medicine (Z.S.), Michigan State University, East Lansing, MI
| | - Manisha Kumari
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Yapei Zhang
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| |
Collapse
|
3
|
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr Pharm Des 2022; 28:3212-3224. [PMID: 36281868 DOI: 10.2174/1381612829666221021152354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intravenous route of drug administration has maximum bioavailability, which shows 100% of the drug reaches blood circulation, whereas the oral administration of drugs, are readily undergoing pre-systemic metabolism, which means the poor bioavailability of the drug and limited amount of drug reaches the target site. INTRODUCTION Bioenhancers are substances having medicinal entities which enhance the bioavailability and efficacy of the active constituents of drugs. The enhanced bioavailability of drugs may lead to dose reduction, which may further reduce the cost and undesired side effects associated with the drugs. METHODS The solid lipid nanoparticles (SLNs) loaded with ketoprofen made from carnauba wax and beeswax. It was discovered that when the drug-loaded SLNs were mixed with egg-lecithin and Tween-80, as well as when the total surfactant concentration was increased, the average particle size of the drug-loaded SLNs decreased. RESULTS The drug-loaded nanoparticles, when given in combination with bio-enhancers such as piperine and quercetin, enhanced the drug's effectiveness. The Area Under Curve (AUC) was increased when the drug was coupled with bio-enhancers. Based on the findings, it can be concluded that piperine and quercetin when used with drug-loaded nanoparticles improve their therapeutic effectiveness. CONCLUSION Bioenhancers are crucial to amplifying the bioavailability of many synthetic drugs. These attributes are useful to reduce the dose of drugs and increase the therapeutic efficacy of drugs with poor bioavailability.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Sumant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
4
|
Bhatia T, Gupta GD, Kurmi BD, Singh D. Role of solid lipid nanoparticle for the delivery of Lipophilic Drugs and Herbal Medicines in the treatment of pulmonary hypertension. Pharm Nanotechnol 2022; 10:PNT-EPUB-126042. [PMID: 36045536 DOI: 10.2174/2211738510666220831113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon condition marked by elevated pulmonary artery pressure that leads to right ventricular failure. The majority of drugs are now been approved by FDA for PAH, however, several biopharmaceutical hindrances lead to failure of the therapy. Various novel drug delivery systems are available in the literature from which lipid-based nanoparticles i.e. solid lipid nanoparticle is widely investigated for improving the solubility and bioavailability of drugs. In this paper, the prototype phytoconstituents used in pulmonary arterial hypertension have limited solubility and bioavailability. We highlighted the novel concepts of SLN for lipophilic phytoconstituents with their potential applications. This paper also reviews the present state of the art regarding production techniques for SLN like High-Pressure Homogenization, Micro-emulsion Technique, and Phase Inversion Temperature Method, etc. Furthermore, toxicity aspects and in vivo fate of SLN are also highlighted in this review. In a nutshell, safer delivery of phytoconstituents by SLN added a novel feather to the cap of successful drug delivery technologies.
Collapse
Affiliation(s)
- Tanuja Bhatia
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| |
Collapse
|
5
|
Oxygen and Drug-Carrying Periodic Mesoporous Organosilicas for Enhanced Cell Viability under Normoxic and Hypoxic Conditions. Int J Mol Sci 2022; 23:ijms23084365. [PMID: 35457183 PMCID: PMC9024945 DOI: 10.3390/ijms23084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
Over the last decade, inorganic/organic hybrids have been exploited for oxygen-carrying materials and drug delivery. Its low-cost synthesis, controlled shape and size, and stability have made it a viable delivery strategy for therapeutic agents. Rutin (quercetin-3-O-rutinoside) is a bioflavonoid found in fruits and vegetables. Rutin has a variety of pharmaceutical applications, but its low water solubility reduces its stability and bioavailability. As a result, we introduce a new and stable nanosystem for loading a low-soluble drug (rutin) into oxygen-carrying periodic mesoporous organosilicas (PMO-PFCs). Over the course of 14 days, this nanosystem provided a sustained oxygen level to the cells in both normoxic and hypoxic conditions. At different pH values, the drug release (rutin) profile is also observed. Furthermore, the rutin-coated PMO-PFCs interacted with both healthy and malignant cells. The healthy cells have better cell viability on the rutin-coated oxygen-carrying PMO-PFCs, while the malignant cells have a lower cell viability.
Collapse
|
6
|
Moradifar N, Kiani AA, Veiskaramian A, Karami K. Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review. Curr Cardiol Rev 2022; 18:e110621194025. [PMID: 35297343 PMCID: PMC9241118 DOI: 10.2174/1573403x17666210611115823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The present investigation was designed to systematically review the antihypertensive effects of all the organic and inorganic nanoparticles in the in vitro, in vivo, and clinical trials. METHODS The current study was carried out using 06-PRISMA guideline and registered in the CAMARADES- NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed on five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar, without time limitation for publications worldwide related to the anti-hypertensive effects of all the organic and inorganic nanoparticles without date limitation, so as to identify all the published articles (in vitro, in vivo, clinical, and case-control). Studies in any language were entered in the search step if they had an English abstract. RESULTS Out of 3602 papers, 60 including 25 werein vitro (41.7%), 17 in vitro / in vivo (28.3%), 16 in vivo (26.7%), and 2 in vitro / ex vivo (3.3%) up to 2020 met the inclusion criteria for discussion in this systematic review. The most widely used nanoparticles were organic nanoparticles such as polylactic acid, poly lactic-co-glycolic acid (PLGA), lipid, chitosan, etc., followed by inorganic nanoparticles such as silver and palladium nanoparticles. CONCLUSION This review demonstrated the anti-hypertensive effects of some organic and inorganic nanoparticles alone or in combination with the available anti-hypertensives. We found that organic nanoparticles such as PGLA and chitosan can be considered as preferred options in nanomedicine for treating high blood pressure. The results also showed these nanoparticles displayed antihypertensive effects through some mechanisms such as sustained release forms via increasing bioavailability, increasing oral bioavailability and improving oral and non-oral absorption, counteracting excessive superoxide, decreasing blood pressure, etc. However, further investigations are required to prove these effects, particularly in clinical settings, as well as their accurate possible mechanisms and toxicity.
Collapse
Affiliation(s)
- Nasrollah Moradifar
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Asghar Kiani
- Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Atefe Veiskaramian
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Nursing, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Scioli Montoto S, Muraca G, Ruiz ME. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front Mol Biosci 2020; 7:587997. [PMID: 33195435 PMCID: PMC7662460 DOI: 10.3389/fmolb.2020.587997] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.
Collapse
Affiliation(s)
- Sebastián Scioli Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Giuliana Muraca
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto Nacional de Medicamentos (INAME, ANMAT), Buenos Aires, Argentina
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K, Jafari S, Ahmadian E, Gorbani Jahandizi N, Raeesi S. Therapeutic benefits of rutin and its nanoformulations. Phytother Res 2020; 35:1719-1738. [PMID: 33058407 DOI: 10.1002/ptr.6904] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rutin as a natural flavonoid compound has revealed an extensive range of therapeutic potentials. PURPOSE The current paper is focused on the numerous studies on rutin nanoformulations regarding its broad spectrum of therapeutic potentials. STUDY AND METHODS A review was conducted in electronic databases (PubMed) to identify relevant published literature in English. No restrictions on publication date were imposed. RESULTS The literature search provided 7,078 results for rutin. Among them, 25 papers were related to the potential biological activities of rutin nanoformulations. Polymeric nanoparticles were the most studied nanoformulations for rutin (14 titles) and lipid nanoparticles (5 titles) were in second place. The reviewed literature showed that rutin has been used as an antimicrobial, antifungal, and anti-allergic agent. Improving the bioavailability of rutin using novel drug-delivery methods will help the investigators to use its useful effects in the treatment of various chronic human diseases. CONCLUSION It can be concluded that the preparation of rutin nanomaterials for the various therapeutic objects confirmed the enhanced aqueous solubility as well as enhanced efficacy compared to conventional delivery of rutin. However, more investigations should be conducted to confirm the improved bioavailability of the rutin nanoformulations.
Collapse
Affiliation(s)
- Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran, University of Medical Sciences, Sari, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Gorbani Jahandizi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Raeesi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|