1
|
Gao L, Wang W, Liao X, Tan X, Yue J, Zhang W, Wu J, Willison JHM, Tian Q, Liu Y. Soil nutrients, enzyme activities, and bacterial communities in varied plant communities in karst rocky desertification regions in Wushan County, Southwest China. Front Microbiol 2023; 14:1180562. [PMID: 37389350 PMCID: PMC10301756 DOI: 10.3389/fmicb.2023.1180562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Vegetation restoration has become a common practice in karst rocky desertification (KRD) areas of southwestern China. The bacteria, which have made a connection between soil and plants, have been an important role in regulating the succession and restoration of karst vegetation. However, it is still unclear how soil bacterial communities and soil properties respond to natural vegetation restoration processes in karst areas. To address this gap, we investigated the soil nutrients, enzyme activity, and soil bacterial community among various plant communities, including farmland (FL), land with herbs only (SSI), herb-and-shrub land (SSII), woody thickets (SSIII), coniferous forest (SSIV), coniferous and broad-leaved mixed forest (SSV), and evergreen broad-leaved forest (SSVI). Our results found that SSII had the highest levels of soil organic matter, total nitrogen, available phosphorus, available nitrogen, sucrase, and β-glucosidase among all the plant communities. These results indicated that herb-and-shrub land have contributed to the rapid restoration of vegetation in KRD regions. FL exhibited the lowest levels of soil nutrients and enzyme activities, while showing the highest bacterial richness and diversity among all the plant communities. This suggested that appropriate human intervention can increase bacterial diversity and richness in the area. The predominant bacterial phylum also varied among the different plant communities, with Actinobacteria being the most abundant in SSI, SSII, SSIII, and SSIV, while Proteobacteria were the most abundant in SSV and SSVI. Furthermore, PCoA analysis demonstrated significant changes in the soil bacterial community structure, with SSI, SSII, SSIII, and SSIV had shared similar structures, while SSV and SSVI had comparable structures. As for soil characteristics, total phosphorus (TP) and total potassium (TK) were the primary factors affecting the soil bacterial community. SSV and SSVI had the most complex bacterial networks and were more stable than other groups. The genera Ktedonobacter, norank_f_Anaerolineaceae, and Vicinamibacter had the highest betweenness centrality scores and were identified as keystone genera in the co-occurrence network in KRD areas. In summary, our results have demonstrated that herb-and-shrub can promote community succession and increase soil nutrient levels in KRD regions.
Collapse
Affiliation(s)
- Lan Gao
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Weihan Wang
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Xingyu Liao
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xing Tan
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jiaxing Yue
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Wen Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jiaojiao Wu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - J. H. Martin Willison
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, Canada
| | - Qiuling Tian
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yun Liu
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Dong F, Zhu Y, Zhu X, Zhang C, Tao Y, Shao T, Wang Y, Luo X. Fungal community remediate quartz tailings soil under plant combined with urban sludge treatments. Front Microbiol 2023; 14:1160960. [PMID: 37152723 PMCID: PMC10157048 DOI: 10.3389/fmicb.2023.1160960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tailings can cause extensive damage to soil structure and microbial community. Phytoremediation is an effective strategy for remedied tailings soil due to its environmentally friendly and low-cost advantage. Fungi play a crucial role in nutrient cycling, stress resistance, stabilizing soil structure, and promoting plant growth. However, the fungal community variation in phytoremediation remains largely unexplored. Methods We analyzed soil fungal community based on high-throughput sequencing during three plant species combined with urban sludge to remediate quartz tailings soil. Results The results indicated that the fungal diversity was significantly increased with plant diversity, and the highest fungal diversity was in the three plant species combination treatments. Moreover, the fungal diversity was significantly decreased with the addition of urban sludge compared with plant treatments, while the abundance of potential beneficial fungi such as Cutaneotrichosporon, Apiotrichum, and Alternaria were increased. Notably, the fungal community composition in different plant species combination treatments were significant difference at the genus level. The addition of urban sludge increased pH, available phosphorus (AP), and available nitrogen (AN) content that were the main drivers for fungal community composition. Furthermore, the fungal networks of the plant treatments had more nodes and edges, higher connectedness, and lower modularity than plant combined with urban sludge treatments. Conclusion Our results showed that three plant species combined with urban sludge treatments improved fungal community and soil properties. Our results provide insights for quartz tailings soil remediation using plant-fungi- urban sludge.
Collapse
Affiliation(s)
- Fabao Dong
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yujia Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xunmei Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Chengzhi Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingying Tao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Taotao Shao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yue Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xia Luo
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
3
|
Zhou X, Xin J, Huang X, Li H, Li F, Song W. Linking Leaf Functional Traits with Soil and Climate Factors in Forest Ecosystems in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3545. [PMID: 36559655 PMCID: PMC9781696 DOI: 10.3390/plants11243545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Plant leaf functional traits can reflect the adaptive strategies of plants to environmental changes. Exploring the patterns and causes of geographic variation in leaf functional traits is pivotal for improving ecological theory at the macroscopic scale. In order to explore the geographical variation and the dominant factors of leaf functional traits in the forest ecosystems of China, we measured 15 environmental factors on 16 leaf functional traits in 33 forest reserves in China. The results showed leaf area (LA), carbon-to-nitrogen ratio (C/N), carbon-to-phosphorus ratio (C/P), nitrogen-to-phosphorus ratio (N/P), phosphorus mass per area (Pa) and nitrogen isotope abundance (δ15N)) were correlated with latitude significantly. LA, Pa and δ15N were also correlated with longitude significantly. The leaf functional traits in southern China were predominantly affected by climatic factors, whereas those in northern China were mainly influenced by soil factors. Mean annual temperature (MAT), mean annual precipitation (MAP) and mean annual humidity (MAH) were shown to be the important climate factors, whereas available calcium (ACa), available potassium (AK), and available magnesium (AMg) were shown to be the important climate factors that affect the leaf functional traits of the forests in China. Our study fills the gap in the study of drivers and large-scale geographical variability of leaf functional traits, and our results elucidate the operational mechanisms of forest-soil-climate systems. We provide reliable support for modeling global forest dynamics.
Collapse
Affiliation(s)
- Xingyu Zhou
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jiaxun Xin
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian, Beijing 100081, China
| | - Xiaofei Huang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
- Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan, Chengdu University of Technology, Chengdu 610059, China
| | - Haowen Li
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian, Beijing 100081, China
| | - Fei Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
- Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan, Chengdu University of Technology, Chengdu 610059, China
| | - Wenchen Song
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian, Beijing 100081, China
| |
Collapse
|
4
|
Ye H, Wen Y, Chen Z, Zhang T, Li S, Guan M, Zhang Y, Su S. Relationship of Soil Microbiota to Seed Kernel Metabolism in Camellia oleifera Under Mulched. FRONTIERS IN PLANT SCIENCE 2022; 13:920604. [PMID: 35795350 PMCID: PMC9251579 DOI: 10.3389/fpls.2022.920604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
An experiment was conducted from 2016 to 2017 to assess the effect of kernel metabolism in development stages after organic mulching compared to control. Organic mulching significantly increased crop yields (higher 128% in 2016, higher 60% in 2017), oil content (the highest oil content was 27.6% higher than that of the control), and improved soil properties (SOC, SAN, AP, and AK). In this study, soil pH, SOC, AN, AP, and AK in 0-30 cm soil depth were measured. Results showed that the effect of mulching on soil pH was not significant at the harvesting stage. The greatest metabolic differences occurred during the period of high oil conversion (S2-S4), primarily involving 11 relevant metabolic pathways. This further verified that Camellia oleifera oil yield was improved after mulching. A total of 1,106 OTUs were detected by using 16S rRNA, and Venn diagram showed that there were 106 unique OTUs in control and 103 OTUs in the treatment, respectively. Correlation analysis showed that soil pH and soil temperature were two indicators with the most correlations with soil microbiota. The yield was significantly positively correlated with soil microbial Proteobacteria, Bacteroidetes, and soil nutrition indexes. Organic mulching improved the physicochemical properties of soils, caused differences in the relative abundance of dominant bacteria in soil bacteria, and improved the soil microbiological environment to promote plant growth, indicating that organic mulching is an effective measure to alleviate seasonal drought.
Collapse
Affiliation(s)
- Honglian Ye
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
- Department of Plant Science, University of California, Davis, Davis, CA, United States
| | - Yue Wen
- Research Center for Xinjiang Characteristic Fruit Tree, College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Zhigang Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Taikui Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengxing Li
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Menglong Guan
- West China Hospital of Sichuan University, Chengdu, China
| | - Yunqi Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Gong J, Hou W, Liu J, Malik K, Kong X, Wang L, Chen X, Tang M, Zhu R, Cheng C, Liu Y, Wang J, Yi Y. Effects of Different Land Use Types and Soil Depths on Soil Mineral Elements, Soil Enzyme Activity, and Fungal Community in Karst Area of Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053120. [PMID: 35270817 PMCID: PMC8910417 DOI: 10.3390/ijerph19053120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
The current research was aimed to study the effects of different land use types (LUT) and soil depth (SD) on soil enzyme activity, metal content, and soil fungi in the karst area. Soil samples with depths of 0–20 cm and 20–40 cm were collected from different land types, including grassland, forest, Zanthoxylum planispinum land, Hylocereus spp. land and Zea mays land. The metal content and enzyme activity of the samples were determined, and the soil fungi were sequenced. The results showed that LUT had a significant effect on the contents of soil K, Mg, Fe, Cu and Cr; LUT and SD significantly affected the activities of invertase, urease, alkaline phosphatase and catalase. In addition, Shannon and Chao1 index of soil fungal community was affected by different land use types and soil depths. Ascomycota, Basidiomycota and Mortierellomycota were the dominant phyla at 0–20 cm and 20–40 cm soil depths in five different land types. Land use led to significant changes in soil fungal structure, while soil depth had no significant effect on soil fungal structure, probably because the small-scale environmental changes in karst areas were not the dominant factor in changing the structure of fungal communities. Additionally, metal element content and enzyme activity were related to different soil fungal communities. In conclusion, soil mineral elements content, enzyme activity, and soil fungal community in the karst area were strongly affected by land use types and soil depths. This study provides a theoretical basis for rational land use and ecological restoration in karst areas.
Collapse
Affiliation(s)
- Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Wenpeng Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Kamran Malik
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Li Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Xianlei Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Ruiqing Zhu
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Chen Cheng
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Yinglong Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (J.W.); (Y.Y.)
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
- Correspondence: (J.W.); (Y.Y.)
| |
Collapse
|
6
|
Xiao X, Chen J, Liao X, Yan Q, Liang G, Liu J, Wang D, Guan R. Different Arbuscular Mycorrhizal Fungi Established by Two Inoculation Methods Improve Growth and Drought Resistance of Cinnamomum Migao Seedlings Differently. BIOLOGY 2022; 11:biology11020220. [PMID: 35205086 PMCID: PMC8869179 DOI: 10.3390/biology11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Drought is a global climatic phenomenon and one of the main factors that negatively affect plant growth. Karst is a unique type of ecosystem where ecological degradation is becoming more and more serious due to the aggravation of global drought. Vegetation restoration is an effective method for preventing ecological degradation in Karst ecosystems. Cinnamomum migao is selected as the tree species for vegetation restoration, because it is a unique, fast-growing medicinal plant of Southwest China that only thrives in Karst regions. Arbuscular mycorrhizal fungi (AMF) are an important component of the soil biota in ecosystems and alleviate drought stress in plants by forming a mutualistic symbiosis. Most previous studies just considered the effects of AMF species on drought resistance but did not evaluate different inoculation methods. The aim of the present study was to compare the effects of different AMF resulting from the use of different inoculation methods on the growth and drought resistance of C. migao seedlings in Karst soil. The findings of this study will improve the success rate of reforestation programs in Karst ecosystems through the utilization of these important microorganisms. Abstract Drought stress is one of the greatest obstacles affecting field crop productivity in arid and semi-arid regions, and its severity and frequency are expected to increase due to human-induced changes to the environment and climate. Drought has led to rocky desertification in Karst regions. Cinnamomum migao is a unique, fast-growing medicinal plant of Southwest China that only thrives in Karst regions. Arbuscular mycorrhizal fungi (AMF) symbiosis alleviates drought stress in plants; however, establishment and function of the symbiotic interaction between AMF host plant in relation to the inoculation method remain unclear. Therefore, we conducted an experiment to investigate the effects of AMF species (Glomus etunicatum and Funneliformis mosseae) and two inoculation methods (seed vs. seedling inoculation) under drought stress on C. migao seedlings, and quantified mycorrhizal colonization, AMF spore density, root vigor, relative water content, C. migao growth, antioxidant enzyme activities, and osmotic adjustment. Inoculation with AMF (G. etunicatum and F. mosseae) positively affected the growth and root vigor of Cinnamomum migao under drought stress, regardless of the inoculation method. Additionally, both AMF species markedly upregulated antioxidant enzyme activities and osmotic adjustment substances, regardless of the inoculation method. Our results showed that the collective stimulatory effect of G. etunicatum is more efficient than that of F. mosseae. AMF application could promote afforestation with C. migao to prevent rocky desertification in Karst regions where water is the greatest limiting factor on plant growth and yield.
Collapse
Affiliation(s)
- Xuefeng Xiao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Jingzhong Chen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Xiaofeng Liao
- Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China;
| | - Qiuxiao Yan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Gelin Liang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Jiming Liu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
- Correspondence: ; Tel.: +86-139-8501-5398
| | - Deng Wang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Ruiting Guan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| |
Collapse
|
7
|
Song Y, Liu T, Han X, Lu Y, Xu X, Wang L, Liao Z, Dong Z, Jiao R, Liang W, Liu H. Adaptive traits of three dominant desert-steppe species under grazing-related degradation: Morphology, structure, and function. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Total nitrogen is the main soil property associated with soil fungal community in karst rocky desertification regions in southwest China. Sci Rep 2021; 11:10809. [PMID: 34031439 PMCID: PMC8144601 DOI: 10.1038/s41598-021-89448-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Karst rocky desertification (KRD) is a type of land deterioration, resulting in the degraded soil and a delicate ecosystem. Previous studies focused on the influence of KRD on the animals and plants, the impact of KRD on microorganisms, especially soil fungi remains to be discovered. This study reveals the change in the soil fungal community in response to KRD progression in southwest China. Illumina HiSeq was used to survey the soil fungal community. Results showed that the soil fungal community in the severe KRD (SKRD) was noticeably different from that in other KRD areas. Statistical analyses suggested that soil TN was the primary factor associated with the fungal community, followed by pH. Phylum Ascomycota was significantly abundant in non-degraded soils; whereas Basidiomycota predominated in SKRD. The ratio of Ascomycota/Basidiomycota significantly decreased along with KRD progression, which might be used as an indicator of KRD severity. Phylum Basidiomycota was sensitive to changes in all the soil properties but AP. Genus Sebacina might have the potential to promote vegetation and land restoration in KRD areas. This study fills a gap of knowledge on changes in soil fungal communities in accordance with KRD progression.
Collapse
|
9
|
Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Umair M, Sun N, Du H, Hui N, Altaf M, Du B, Yin S, Liu C. Bacterial Communities Are More Sensitive to Water Addition Than Fungal Communities Due to Higher Soil K and Na in a Degraded Karst Ecosystem of Southwestern China. Front Microbiol 2020; 11:562546. [PMID: 33240226 PMCID: PMC7680866 DOI: 10.3389/fmicb.2020.562546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Precipitation is predicted to become more intense in Southern China in the context of climate change; however, the responses of microbial communities to variations in soil moisture have not been well documented for karst areas. The climate is typically in a subtropical monsoon category with two different seasons: a dry season (December-May) and a wet season (June-November). Based on a randomized complete block design (RCBD), a water addition experiment (0, +20, +40, and +60% relative to local precipitation) was established in April 2017, with five replicates, in a degraded grass-shrub community. Sampling was performed in May and at the end of August of 2017. Macroelements (C, H, N, P, K, Ca, Mg, and S), microelements (Mn, Fe, Zn, and Cu), and non-essential elements (Na, Al, and Si) were quantified in the soil. The total DNA of the soil samples was analyzed through 16S rRNA amplicon by Illumina Miseq. Subsequent to the addition of water during both the dry and wet seasons, the concentrations of non-metal elements (C, H, N, S, and P, except for Si) in the soil remained relatively stable; however, metal elements (K, Na, Fe, and Mg, along with Si) increased significantly, whereas Zn and Ca decreased. During the dry season, fungal and bacterial communities were significantly distinct from those during the wet season along the PC axis 1 (p < 0.001). Water addition did not alter the compositions of bacterial or fungal communities during the dry season. However, during the wet season, water addition altered the compositions of bacterial rather than fungal community based on principal component analysis. At the phylum level, the relative abundance of Actinobacteria increased with water addition and had a significantly positive correlation with K+ (r 2 = 0.70, p < 0.001) and Na+ (r 2 = 0.36, p < 0.01) contents, whereas that of Acidobacteria, Planctomycetes, and Verrucomicrobia decreased and showed negative correlation with soil K and Na content, and no changes were observed for the fungal phyla. This suggests that the karst bacterial communities can be influenced by the addition of water during the wet season likely linked to changes in soil K and Na contents. These findings implied that increased rainfall might alter the elemental compositions of karst soils, and bacterial communities are likely to be more sensitive to variations in soil moisture in contrast to their fungal counterparts.
Collapse
Affiliation(s)
- Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Altaf
- Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
11
|
Ma T, Deng X, Chen L, Xiang W. The soil properties and their effects on plant diversity in different degrees of rocky desertification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139667. [PMID: 32485388 DOI: 10.1016/j.scitotenv.2020.139667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Rocky desertification is a process of soil erosion and vegetation destruction. On the surface, the landscape of rocky desertification is similar to that of desertification, which has a negative impact on the social and economic development of Southwest China. To clarify the influence of soil properties on plant diversity in rocky desertification areas, three grades of rocky desertification in Southwest Hunan Province were selected: light rocky desertification (LRD), moderate rocky desertification (MRD) and intense rocky desertification (IRD). Soil pH, soil organic carbon (SOC), N, P, K, Ca, Mg were measured, and the species compositions of herbs and shrubs were investigated. The effects of soil properties on plant diversity were studied by using redundancy analysis (RDA). The results showed that except soil pH and Ca, which increased with rocky desertification grade, the soil component contents were MRD > LRD > IRD. The species richness of shrubs was higher than that of herbs, and the difference was significant in MRD. The diversity of herbs first decreased and then increased, and the distribution became increasingly uniform. By contrast, shrub diversity exhibited an opposing distribution trend. RDA analysis showed that the soil nutrient content differed significantly among the rocky desertification grades. Among the nutrients analysed, N, P and K were the main factors affecting species composition in the rocky desertification areas, and their distribution characteristics partly explained the uneven distributions of herbs and shrubs.
Collapse
Affiliation(s)
- Tianshu Ma
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China.
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| |
Collapse
|
12
|
Wang CY, Zhou X, Guo D, Zhao JH, Yan L, Feng GZ, Gao Q, Yu H, Zhao LP. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01529-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Purpose
To understand which environmental factors influence the distribution and ecological functions of bacteria in agricultural soil.
Method
A broad range of farmland soils was sampled from 206 locations in Jilin province, China. We used 16S rRNA gene-based Illumina HiSeq sequencing to estimated soil bacterial community structure and functions.
Result
The dominant taxa in terms of abundance were found to be, Actinobacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi, and Proteobacteria. Bacterial communities were dominantly affected by soil pH, whereas soil organic carbon did not have a significant influence on bacterial communities. Soil pH was significantly positively correlated with bacterial operational taxonomic unit abundance and soil bacterial α-diversity (P<0.05) spatially rather than with soil nutrients. Bacterial functions were estimated using FAPROTAX, and the relative abundance of anaerobic and aerobic chemoheterotrophs, and nitrifying bacteria was 27.66%, 26.14%, and 6.87%, respectively, of the total bacterial community. Generally, the results indicate that soil pH is more important than nutrients in shaping bacterial communities in agricultural soils, including their ecological functions and biogeographic distribution.
Collapse
|
13
|
Qi D, Wieneke X, Tao J, Zhou X, Desilva U. Soil pH Is the Primary Factor Correlating With Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China. Front Microbiol 2018; 9:1027. [PMID: 29896164 PMCID: PMC5987757 DOI: 10.3389/fmicb.2018.01027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/01/2018] [Indexed: 01/22/2023] Open
Abstract
Karst rocky desertification (KRD) is a process of land degradation, which causes desert-like landscapes, deconstruction of endemic biomass, and declined soil quality. The relationship of KRD progression with above-ground communities (e.g. vegetation and animal) is well-studied. Interaction of soil desertification with underground communities, such as soil microbiome, however, is vastly unknown. This study characterizes change in soil bacterial community in response to KRD progression. Soil bacterial communities were surveyed by deep sequencing of 16S amplicons. Eight soil properties, pH, soil organic matter (SOM), total and available nitrogen (TN and AN), total and available phosphorus (TP and AP), and total and available potassium (TK and AK), were measured to assess soil quality. We find that the overall soil quality decreases along with KRD progressive gradient. Soil bacterial community compositions are distinguishingly different in KRD stages. The richness and diversity in bacterial community do not significantly change with KRD progression although a slight increase in diversity was observed. A slight decrease in richness was seen in SKRD areas. Soil pH primarily correlates with bacterial community composition. We identified a core microbiome for KRD soils consisting of; Acidobacteria, Alpha-Proteobacteria, Planctomycetes, Beta-Proteobacteria, Actinobacteria, Firmicutes, Delta-Proteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Gemmatimonadetes in this study. Phylum Cyanobacteria is significantly abundant in non-degraded soils, suggesting that Cyanobacterial activities might be correlated to soil quality. Our results suggest that Proteobacteria are sensitive to changes in soil properties caused by the KRD progression. Alpha- and beta-Proteobacteria significantly predominated in SKRD compared to NKRD, suggesting that Proteobacteria, along with many others in the core microbiome (Acidobacteria, Actinobacteria, Firmicutes, and Nitrospirae), were active in nutrient limiting degraded soils. This study demonstrates the relationship of soil properties with bacterial community in KRD areas. Our results fill the gap of knowledge on change in soil bacterial community during KRD progression.
Collapse
Affiliation(s)
- Daihua Qi
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xuwen Wieneke
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Jianping Tao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xu Zhou
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Udaya Desilva
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|