1
|
Weng HP, Ke CH, Tung CW, Tani A, Wang CC, Yang WY, Wang YS, Han W, Liao CH, Tomiyasu H, Lin CS. Canine diffuse large b-cell lymphoma downregulates the activity of CD8 + T-cells through tumor-derived extracellular vesicles. Cancer Cell Int 2023; 23:252. [PMID: 37884996 PMCID: PMC10601183 DOI: 10.1186/s12935-023-03104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Tumor-derived extracellular vesicles (EVs) have been proposed as the essential mediator between host immunity and cancer development. These EVs conduct cellular communication to facilitate tumor growth, enable invasion and metastasis, and shape the favorable tumor microenvironment. Lymphoma is one of the most common hematological malignancies in humans and dogs. Effective T-cell responses are required for the control of these malignancies. However, the immune crosstalk between CD8 + T-cells, which dominates anti-tumor responses, and canine lymphoma has rarely been described. METHODS This study investigates the immune manipulating effects of EVs, produced from the clinical cases and cell line of canine B cell lymphoma, on CD8 + T-cells isolated from canine donors. RESULTS Lymphoma-derived EVs lead to the apoptosis of CD8 + T-cells. Furthermore, EVs trigger the overexpression of CTLA-4 on CD8 + T-cells, which indicates that EV blockade could serve as a potential therapeutic strategy for lymphoma patients. Notably, EVs transform the CD8 + T-cells into regulatory phenotypes by upregulating their PD-1, PD-L1, and FoxP3 mRNA expression. The regulatory CD8 + T-cells secret the panel of inhibitory cytokines and angiogenic factors and thus create a pro-tumorigenic microenvironment. CONCLUSION In summary, the current study demonstrated that the EVs derived from canine B cell lymphoma impaired the anti-tumor activity of CD8 + T-cells and manipulated the possible induction of regulatory CD8 + T-cells to fail the activation of host cellular immunity.
Collapse
Affiliation(s)
- Hsin-Pei Weng
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 106, Taipei, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan
| | - Akiyoshi Tani
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Chia-Chi Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Shan Wang
- Lab. 2612, Rekiin Biotech Inc, Taipei, 114737, Taiwan
| | - Winston Han
- Lab. 2612, Rekiin Biotech Inc, Taipei, 114737, Taiwan
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC.
| |
Collapse
|
2
|
Crittenden JR, Zhai S, Sauvage M, Kitsukawa T, Burguière E, Thomsen M, Zhang H, Costa C, Martella G, Ghiglieri V, Picconi B, Pescatore KA, Unterwald EM, Jackson WS, Housman DE, Caine SB, Sulzer D, Calabresi P, Smith AC, Surmeier DJ, Graybiel AM. CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiol Dis 2021; 158:105473. [PMID: 34371144 PMCID: PMC8486000 DOI: 10.1016/j.nbd.2021.105473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington’s disease and levodopa-induced dyskinesia in Parkinson’s disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI’s therapeutic potential.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Magdalena Sauvage
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Leibniz Institute for Neurobiology, Functional Architecture of Memory Dept., Magdeburg, Germany
| | - Takashi Kitsukawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eric Burguière
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM U 1127, UPMC-P6 UMR S, 1127, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, Paris, France
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University, DK-2100, Copenhagen, Denmark; Basic Neuroscience Division, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Hui Zhang
- Departments of Psychiatry, Pharmacology, Neurology, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cinzia Costa
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della misericordia, University of Perugia, 06100 Perugia, Italy
| | - Giuseppina Martella
- Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | | - Karen A Pescatore
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - David E Housman
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - S Barak Caine
- Basic Neuroscience Division, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - David Sulzer
- Departments of Psychiatry, Pharmacology, Neurology, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Faculty of Medicine, Università Cattolica del "Sacro Cuore", 00168 Rome, Italy
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J. Recent advances in CD8 + regulatory T cell research. Oncol Lett 2018; 15:8187-8194. [PMID: 29805553 DOI: 10.3892/ol.2018.8378] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
Various subgroups of CD8+ T lymphocytes do not only demonstrate cytotoxic effects, but also serve important regulatory roles in the body's immune response. In particular, CD8+ regulatory T cells (CD8+ Tregs), which possess important immunosuppressive functions, are able to effectively block the overreacting immune response and maintain the body's immune homeostasis. In recent years, studies have identified a small set of special CD8+ Tregs that can recognize major histocompatibility complex class Ib molecules, more specifically Qa-1 in mice and HLA-E in humans, and target the self-reactive CD4+ T ce lls. These findings have generated broad implications in the scientific community and attracted general interest to CD8+ Tregs. The present study reviews the recent research progress on CD8+ Tregs, including their origin, functional classification, molecular markers and underlying mechanisms of action.
Collapse
Affiliation(s)
- Yating Yu
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Xinbo Ma
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Rufei Gong
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jianmeng Zhu
- Department of Chunan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lihua Wei
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jinguang Yao
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|