1
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
2
|
Identification of a novel autophagy-related prognostic signature and small molecule drugs for glioblastoma by bioinformatics. BMC Med Genomics 2022; 15:111. [PMID: 35550147 PMCID: PMC9097333 DOI: 10.1186/s12920-022-01261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To explore the autophagy-related prognostic signature (ARPs) via data mining in gene expression profiles for glioblastoma (GBM). METHODS Using the Cancer Genome Atlas (TCGA) database, we obtained 156 GBM samples and 5 adjacent normal samples, and denoted them as discovery cohort. Univariate Cox regression analysis was used to screen autophagy genes that related to GBM prognosis. Then, the least absolute shrinkage and selection operator Cox regression model was used to construct an autophagy-based ARPs, which was validated in an external cohort containing 80 GBM samples. The patients in the above-mentioned cohorts were divided into low-risk group and high-risk group according to the median prognostic risk score, and the diagnostic performance of the model was assessed by receiver operating characteristic curve analyses. The gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed between the high-risk and low-risk patients. Additionally, the genetic features of ARPs, such as genetic variation profiles, correlations with tumor-infiltrating lymphocytes (TILs), and potential drug sensitivity, were further assessed in the TCGA-GBM data set. RESULTS A signature of ARPs including NDUFB9, BAK1, SUPT3H, GAPDH, CDKN1B, CHMP6, and EGFR were detected and validated. We identified a autophagy-related prognosis 7-gene signature correlated survival prognosis, immune infiltration, level of cytokines, and cytokine receptor in tumor microenvironment. Furthermore, the signature was tested in several pathways related to disorders of tumor microenvironment, as well as cancer-related pathways. Additionally, a range of small molecular drugs, shown to have a potential therapeutic effect on GBM. CONCLUSIONS We constructed an autophagy-based 7-gene signature, which could serve as an independent prognostic indicator for cases of GBM and sheds light on the role of autophagy as a potential therapeutic target in GBM.
Collapse
|