1
|
Payant MA, Spencer CD, Ly NKK, Chee MJ. Inhibitory actions of melanin-concentrating hormone in the lateral septum. J Physiol 2024; 602:3545-3574. [PMID: 38874572 DOI: 10.1113/jp284845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Melanin-concentrating hormone (MCH) neurons can co-express several neuropeptides or neurotransmitters and send widespread projections throughout the brain. Notably, there is a dense cluster of nerve terminals from MCH neurons in the lateral septum (LS) that innervate LS cells by glutamate release. The LS is also a key region integrating stress- and anxiety-like behaviours, which are also emerging roles of MCH neurons. However, it is not known if or where the MCH peptide acts within the LS. We analysed the projections from MCH neurons in male and female mice anteroposteriorly throughout the LS and found spatial overlap between the distribution pattern of MCH-immunoreactive (MCH-ir) fibres with MCH receptor Mchr1 mRNA hybridization or MCHR1-ir cells. This overlap was most prominent along the ventral and lateral border of the rostral part of the LS (LSr). Most MCHR1-labelled LS neurons lay adjacent to passing MCH-ir fibres, but some MCH-ir varicosities directly contacted the soma or cilium of MCHR1-labelled LS neurons. We thus performed whole-cell patch-clamp recordings from MCHR1-rich LSr regions to determine if and how LS cells respond to MCH. Bath application of MCH to acute brain slices activated a bicuculline-sensitive chloride current that directly hyperpolarized LS cells. This MCH-mediated hyperpolarization was blocked by calphostin C, which suggested that the inhibitory actions of MCH were mediated by protein kinase C-dependent activation of GABAA receptors. Taken together, these findings define potential hotspots within the LS that may elucidate the contributions of MCH to stress- or anxiety-related feeding behaviours. KEY POINTS: Melanin-concentrating hormone (MCH) neurons have dense nerve terminals within the lateral septum (LS), a key region underlying stress- and anxiety-like behaviours that are emerging roles of the MCH system, but the function of MCH in the LS is not known. We found spatial overlap between MCH-immunoreactive fibres, Mchr1 mRNA, and MCHR1 protein expression along the lateral border of the LS. Within MCHR1-rich regions, MCH directly inhibited LS cells by increasing chloride conductance via GABAA receptor activation in a protein kinase C-dependent manner. Electrophysiological MCH effects in brain slices have been elusive, and few studies have described the mechanisms of MCH action. Our findings demonstrated, to our knowledge, the first description of MCHR1 Gq-coupling in brain slices, which was previously predicted in cell or primary culture models only. Together, these findings defined hotspots and mechanistic underpinnings for MCH effects such as in feeding and anxiety-related behaviours.
Collapse
Affiliation(s)
- Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - C Duncan Spencer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Nikita K Koziel Ly
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
4
|
Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst Neurosci 2015; 9:8. [PMID: 25741246 PMCID: PMC4327307 DOI: 10.3389/fnsys.2015.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical "relay" regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior.
Collapse
Affiliation(s)
- Kevin R Urstadt
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - B Glenn Stanley
- Departments of Psychology and Cell Biology and Neuroscience, University of California - Riverside Riverside, CA, USA
| |
Collapse
|
5
|
Szőke B, Lendvai Z, Halasy K. The effect of partial food deprivation on the astroglia in the dorsal subnucleus of the lateral septum of the rat brain. ACTA BIOLOGICA HUNGARICA 2013; 64:414-25. [PMID: 24275588 DOI: 10.1556/abiol.64.2013.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of 40% partial food deprivation was studied on the immunohistochemically detectable amount of glial fibrillary acidic protein (GFAP) - the specific marker of astroglia - in the dorsal subnucleus of lateral septum (LS) of male, intact and ovariectomized (OVX) female rats. Animals were either fed ad libitum (control) or 40% food deprived for one week, then perfusion-fixed, their brains removed, and serial vibratome sections were processed for the immunocytochemical localization of GFAP. Computeraided densitometry was carried out on digital photographs.The results showed that ovariectomy alone did not exert any effect on the density of GFAPimmunoreactivity (GFAP-IR) as compared to the values detected in intact females. Food deprivation increased the density of GFAP in each experimental group. The difference was most pronounced in males, significant in females and much less in ovariectomized females. Parietal cortex chosen as reference area did not show any increase in the local GFAP-IR.It was previously shown that the dorsal subnucleus of the lateral septum reacts with plastic neurochemical changes to food deprivation. Our results prove that these changes affect not only neuronal but also glial elements.
Collapse
Affiliation(s)
- B Szőke
- Szent István University Department of Anatomy and Histology, Faculty of Veterinary Sciences Budapest Hungary
| | | | | |
Collapse
|
6
|
Janzsó G, Valcz G, Thuma A, Szoke B, Lendvai Z, Abrahám H, Kozicz T, Halasy K. Cocaine- and amphetamine-regulated transcript (CART) peptide-immunopositive neuronal elements in the lateral septum: rostrocaudal distribution in the male rat. Brain Res 2010; 1362:40-7. [PMID: 20883668 DOI: 10.1016/j.brainres.2010.09.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/07/2010] [Accepted: 09/22/2010] [Indexed: 11/26/2022]
Abstract
The morphological features and distribution of cocaine- and amphetamine-regulated transcript peptide immunoreactivity (CART-IR) were studied in the lateral septum (LS) of male rats using light and electron microscopic immunocytochemistry and computer-aided densitometry. CART-IR was detected along the rostrocaudal axis of the LS in varicose axonal fibers only, although immunoreactive cell bodies and dendrites were not detected. Pericellular basket-like arrangements around immunonegative cell bodies were present. From among the targets of such pericellular baskets, glutamic acid decarboxylase (GAD)-immunopositive and NPY-immunoreactive somata were identified. Thin varicose axons were present in each section, whereas thick varicose axons were restricted to the sections of rostral position only. CART-IR was observed in varicose fibers forming a dense subependymal plexus, from which solitary varicose fibers entered the ependymal layer. The fine structure of varicosities was similar to that of other neuropeptide-containing fibers. Small varicosities established asymmetrical synaptic contacts mainly with dendrites and dendritic spines, and larger varicosities established symmetrical synapses with somata and dendritic shafts. CART-to-CART connections were not revealed. The density curve of the CART-IR along the rostrocaudal axis of LS was found to be paraboloid. CART is known as one of the most anorexigenic peptides. These results serve as basis for further physiological studies concerning the biological significance of lateral septal CART peptide in the regulation of food intake.
Collapse
Affiliation(s)
- Gergely Janzsó
- Department of Anatomy and Histology, Faculty of Veterinary Sciences, Szent István University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kovács EG, Szalay F, Rácz B, Halasy K. Chronic fasting-induced changes of neuropeptide Y immunoreactivity in the lateral septum of intact and ovariectomized female rats. Brain Res 2007; 1153:103-10. [PMID: 17466286 DOI: 10.1016/j.brainres.2007.03.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/13/2007] [Accepted: 03/23/2007] [Indexed: 12/29/2022]
Abstract
The effect of 40% food deprivation for 1 week on the immunohistochemically detectable amount of neuropeptide Y (NPY) was studied in the lateral septum (LS) of intact and ovariectomized (OVX) female rats. Animals were either fed ad libitum or 40% food-deprived. Densitometric analysis of immunostained material showed a significant decrease in NPY-immunoreactivity (NPY-IR) in OVX rats compared to the control group. Food deprivation increased the density of punctate NPY-IR profiles in both intact and OVX animals, however, the density in food-deprived OVX animals was increased compared to baseline but remained reduced compared to intact rats. Our study indicates that the lack of gonadal hormones - most likely estrogen - results in a decrease in the density of NPY-IR axonal fibers within the LS, while food deprivation induced considerable elevation in NPY density. Food restriction-induced changes in the density of NPY-containing neural elements suggest that the LS may play a crucial role in the regulation of food intake and energy balance, in concert with the relevant hypothalamic areas.
Collapse
Affiliation(s)
- Eva G Kovács
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary.
| | | | | | | |
Collapse
|
8
|
Aşkin A, Camlica Y, Cömelekoğlu U. Opioid peptides as possible neuromodulators in the frog peripheral nerve system. Neuropeptides 2007; 41:73-81. [PMID: 17296223 DOI: 10.1016/j.npep.2006.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/29/2006] [Accepted: 12/10/2006] [Indexed: 11/17/2022]
Abstract
Sciatic nerves of the frog Rana ridibunda were examined for the effects of applied opioid peptide, methionine-enkephalin, synthetic enkephalin analogue, leucine-enkephalin-NH(2) and opiate antagonist, naloxone. The effect of both peptides in concentrations of 1x10(-6) and 1x10(-5)M or naloxone in 1x10(-6)M was investigated on the action potential parameters using electrophysiological techniques. The isolated nerves were stimulated by single square pulses each of which lasted for 0.5ms at supramaximal strength. Effect of each single dose of peptides at 0min was compared with the remaining time segments. Both peptides produced changes in action potential of nerve when compared with untreated nerves. Methionine-enkephalin in both concentrations reduced the amplitude between 7% and 41% and conduction velocity at about 26-61%. This peptide in the same concentrations prolonged the duration around 12-53% and increased the stimulating voltage at about 9-50%. In contrast, leucine-enkephalin-NH(2) in both concentrations caused a decrease in amplitude between 13% and 48% and in conduction velocity around 20-50%. The same concentrations of this peptide prolonged the duration at about 3-33% and increased the stimulating voltage at about 10-56%, but naloxone in 1x10(-6)M antagonized the responses of both peptides over 75%. The results indicate that both opioid peptides produce changes in action potential parameters in frog peripheral nerve system and these changes are partially reversed by naloxone.
Collapse
Affiliation(s)
- A Aşkin
- Department of Biology, Faculty of Arts and Sciences, Mersin University, 33342 Mersin, Turkey.
| | | | | |
Collapse
|
9
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|