1
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wang JH, Miao L, Li MY, Guo XF, Pan N, Chen YY, Zhao L. Cloning the Dmrt1 and DmrtA2 genes of ayu (Plecoglossus altivelis) and mapping their expression in adult, larval, and embryonic stages. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2014; 35:99-107. [PMID: 24668652 DOI: 10.11813/j.issn.0254-5853.2014.2.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Dmrt family of genes are involved in sex differentiation in different species of invertebrates, and some vertebrates including human. In this study, we cloned the full-length cDNA of ayu (Plecoglossus altivelis) Dmrt1 and DmrtA2. Sequence and phylogenetic tree analyses showed ayu Dmrt1 showed highest similarity to that of Oncorhynchus mykiss while ayu DmrtA2 is most similar to that of Oryzias latipes. Fluorescence-based quantitative reverse transcription PCR (qRT-PCR) revealed the Dmrt1 was predominantly expressed in the testis. At the larval stages, Dmrt1 mRNA expression level was highest during 52-64 days post hatching (dph) and at the gastrula stage during embryonic development. DmrtA2, meanwhile, was specifically expressed in the ovary and was highly expressed in the female brain tissue, but not male brain tissue. During the larval stages, DmrtA2 expression remained high before day 34, and then fluctuated while generally decreasing. During embryonic development, DmrtA2 expression increased gradually and peaked at the hatching stage. Our data suggest that ayu Dmrt1 might participate in the differentiation and maintenance of testis while DmrtA2 may play a role in ovary-differentiation and mature-ovary maintenance. DmrtA2 might also participate in brain development.
Collapse
Affiliation(s)
| | | | | | | | - Na Pan
- Ningbo University, Ningbo 315211, China
| | | | | |
Collapse
|