Kumar A, Kanwar SS. Synthesis of isopropyl ferulate using silica-immobilized lipase in an organic medium.
Enzyme Res 2011;
2011:718949. [PMID:
21603272 PMCID:
PMC3092610 DOI:
10.4061/2011/718949]
[Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/22/2011] [Accepted: 02/11/2011] [Indexed: 01/13/2023] Open
Abstract
Immobilization of lipases has proved to be a useful technique for improving an enzyme's activity in organic solvents. In the present study, the performance of a silica-immobilized lipase was evaluated for the synthesis of isopropyl ferulate in DMSO. The biocatalyst was cross-linked onto the matrix with 1% glutaraldehyde. The effects of various parameters, molar ratio of ferulic acid to isopropyl alcohol (25 mM : 100 mM), concentration of biocatalyst (2.5–20 mg/mL), molecular sieves (25–250 mg/mL), and various salt ions, were studied consecutively as a function of percent esterification. Immobilized lipase at 25 mg/mL showed maximum esterification (~84%) of ferulic acid and isopropanol at a molar ratio of 25 mM : 100 mM, respectively, in DMSO at 45°C in 3 h under shaking (150 rpm). To overcome the inhibitory effect of water (a byproduct) if any, in the reaction mixture, molecular sieves (3 Å × 1.5 mm; 100 mg/mL) were added to the reaction mixture to promote the forward reaction. Salt ions like Ca2+, Cd2+, and Fe2+ enhanced the activity of immobilized biocatalyst while a few ions like Co2+, Zn2+, Mg2+, Mn2+, Al3+, and Na+ had mild inhibitory effect. Approximately, one third of total decrease in the esterification efficacy was observed after the 5th repetitive cycle of esterification.
Collapse