1
|
Wahyudi D, Kusumasari C. Oxygen as obturation biomaterial in endodontic treatment: development of novel membranous dental restoration system. F1000Res 2024; 12:380. [PMID: 39584013 PMCID: PMC11584453 DOI: 10.12688/f1000research.132479.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 11/26/2024] Open
Abstract
Complexities in obturation and difficulties in disinfection represent significant issues that render endodontic treatment notably time-consuming. A new perspective is essential to reduce both working time and address these two challenges. To date, none of the established techniques for root canal obturation can assure a perfect seal. Solid materials are not easily manipulated to hermetically fill the intricate branches of the root canal system. Concurrently, anaerobic and facultative anaerobic bacteria, particularly Enterococcus faecalis, are predominant in discussions surrounding endodontic infections. Numerous studies have demonstrated that achieving complete disinfection of Enterococcus faecalis is exceedingly difficult, even with the use of irrigating solutions that possess strong antibacterial properties. Under anaerobic conditions, the invasion efficiency of facultative anaerobes is heightened. If irrigation and disinfection fail to entirely eliminate anaerobes and facultative anaerobes, a novel strategy is required to address the bacteria that persist within the root canal. Oxygen can easily permeate the root canal system, eradicate anaerobes, and inhibit facultative anaerobes from becoming pathogenic. Therefore, employing oxygen as a biomaterial for obturation following appropriate cleaning and shaping procedures is anticipated to address the two primary endodontic issues. This article aims to explore a new potential concept for a dental restoration system that utilizes an oxygen-permeable membrane to reduce the time required for endodontic treatment. The membrane is positioned at the orifice of a duct designed to connect the entire root canal system with ambient air outside the restoration. The function of the membrane is somewhat analogous to the masks used during the COVID-19 pandemic, as it allows for the circulation of oxygen while preventing the passage of fluids, debris, and microorganisms. We hypothesize that the oxygen circulating within the root canal system will also function as a continuously renewing antimicrobial agent.
Collapse
Affiliation(s)
- Didi Wahyudi
- Center of Excellence Biomedical and Healthcare Technology, Telkom University, Bandung, Indonesia
- Dental Cooperation Indonesia, Bandung, 40134, Indonesia
| | - Citra Kusumasari
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| |
Collapse
|
2
|
Kowalczyk K, Coraça-Huber DC, Wille-Kollmar W, Berktold M, Nagl M. Activity of N-Chlorotaurine against Periodontal Pathogens. Int J Mol Sci 2024; 25:8357. [PMID: 39125925 PMCID: PMC11313407 DOI: 10.3390/ijms25158357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Dental plaque bacteria play an important role in the pathogenicity of periodontitis and peri-implantitis. Therefore, antimicrobial agents are one means of treatment. N-chlorotaurine (NCT) as an endogenous well-tolerated topical antiseptic could be of advantage for this purpose. Accordingly, its microbicidal activity against some dental plaque bacteria was investigated at therapeutic concentrations in vitro. In quantitative killing assays, the activity of NCT against planktonic bacteria and against biofilms grown for 48 h on implantation screws was tested. Electron microscopy was used to demonstrate the formation of biofilm and its morphological changes. The killing of planktonic bacteria of all tested species, namely Streptococcus sanguinis, Streptococcus salivarius, Streptococcus oralis, Streptococcus cristatus, Rothia aeria, and Capnocytophaga ochracea, was shown within 10-20 min by 1% NCT in 0.01 M phosphate-buffered saline at 37 °C. Bacteria grown on screws for 24 h were inactivated by 1% NCT after 15-20 min as well, but the formation of biofilm on the screws was visible in electron microscopy not before 48 h. The killing of biofilms by 1% NCT was demonstrated after 30 min (streptococci) and 40 min (R. aeria). As expected, NCT has broad activity against dental plaque bacteria as well and should be further investigated on its clinical efficacy in periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Kacper Kowalczyk
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| | - Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | | | - Michael Berktold
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| |
Collapse
|
3
|
Kerémi B, Márta K, Farkas K, Czumbel LM, Tóth B, Szakács Z, Csupor D, Czimmer J, Rumbus Z, Révész P, Németh A, Gerber G, Hegyi P, Varga G. Effects of Chlorine Dioxide on Oral Hygiene - A Systematic Review and Meta-analysis. Curr Pharm Des 2021; 26:3015-3025. [PMID: 32410557 PMCID: PMC8383470 DOI: 10.2174/1381612826666200515134450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Background Effective and selective oral rinses are required in the daily medical and dental practice. Currently mouthwashes used have substantial side effects. Objectives Our aim was to evaluate the efficacy of chlorine dioxide-containing mouthwashes in comparison with other previously established mouth rinses in healthy adults using oral hygiene indices. Methods This work was registered in PROSPERO (CRD42018099059) and carried out using multiple databases and reported according to the PRISMA statement. The search terms used were “chlorine dioxide” AND “oral”, and only randomised controlled trials (RCTs) were included. The primary outcome was the alteration of the plaque index (PI), while the secondary outcomes were the gingival index (GI) and bacterial counts. For the risk of bias assessment, the Cochrane Risk of Bias Tool was used. Statistical analysis for data heterogeneity was performed by Q-value and I2-tests. Results 364 articles were found in the databases. After the selection process, only five RCTs were eligible for meta-analysis. Data heterogeneity was low. There were no statistical differences in effectiveness between chlorine dioxide and other effective mouth rinses in PI (0.720±0.119 vs 0.745±0.131; 95%; confidence intervals (CIs): 0.487-0.952 vs 0.489-1.001, respectively) and GI (0.712±0.130 vs 0.745±0.131; 95% CIs: 0.457–0.967 vs 0.489–1.001, respectively) and also in bacterial counts. Conclusion Chlorine dioxide reduces both plaque and gingival indices and bacterial counts in the oral cavity similar to other routinely used oral rinses, however, the evidence supporting this outcome is very limited. Therefore, further large scale RCTs are needed to decrease the risk of bias.
Collapse
Affiliation(s)
- Beáta Kerémi
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Katalin Márta
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Kornélia Farkas
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary,Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - László M Czumbel
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Barbara Tóth
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - József Czimmer
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltán Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Péter Révész
- Department of Otorhinolaryngology (ENT), Medical School, University of Pecs, Pecs, Hungary
| | - Adrienn Németh
- Department of Otorhinolaryngology (ENT), Medical School, University of Pecs, Pecs, Hungary
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary,Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gábor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Láng O, Nagy KS, Láng J, Perczel-Kovách K, Herczegh A, Lohinai Z, Varga G, Kőhidai L. Comparative study of hyperpure chlorine dioxide with two other irrigants regarding the viability of periodontal ligament stem cells. Clin Oral Investig 2020; 25:2981-2992. [PMID: 33044682 PMCID: PMC8060220 DOI: 10.1007/s00784-020-03618-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Objectives Periodontal ligament stem cells (PDLSCs) have an underlined significance as their high proliferative capacity and multipotent differentiation provide an important therapeutic potential. The integrity of these cells is frequently disturbed by the routinely used irrigative compounds applied as periodontal or endodontic disinfectants (e.g., hydrogen peroxide (H2O2) and chlorhexidine (CHX)). Our objectives were (i) to monitor the cytotoxic effect of a novel dental irrigative compound, chlorine dioxide (ClO2), compared to two traditional agents (H2O2, CHX) on PDLSCs and (ii) to test whether the aging factor of PDLSC cultures determines cellular responsiveness to the chemicals tested. Methods Impedimetry (concentration-response study), WST-1 assays (WST = water soluble tetrazolium salt), and morphology analysis were performed to measure changes in cell viability induced by the 3 disinfectants; immunocytochemistry of stem cell markers (STRO-1, CD90, and CD105) measured the induced mesenchymal characteristics. Results Cell viability experiments demonstrated that the application of ClO2 does not lead to a significant decrease in viability of PLDSCs in concentrations used to kill microbes. On the contrary, traditional irrigants, H2O2, and CHX are highly toxic on PDLSCs. Aging of PLDSC cultures (passages 3 vs. 7) has characteristic effects on their responsiveness to these agents as the increased expression of mesenchymal stem cell markers turns to decreased. Conclusions and clinical relevance While the active ingredients of mouthwash (H2O2, CHX) applied in endodontic or periodontitis management have a serious toxic effect on PDLSCs, the novel hyperpure ClO2 is less toxic providing an environment favoring dental structure regenerations during disinfectant interventions. Electronic supplementary material The online version of this article (10.1007/s00784-020-03618-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina S Nagy
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.,Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Julia Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Katalin Perczel-Kovách
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.,Department in Community Dentistry, Semmelweis University, Budapest, Hungary
| | - Anna Herczegh
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Ujszegi J, Molnár K, Hettyey A. How to disinfect anuran eggs? Sensitivity of anuran embryos to chemicals widely used for the disinfection of larval and post-metamorphic amphibians. J Appl Toxicol 2020; 41:387-398. [PMID: 32830870 DOI: 10.1002/jat.4050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
Emerging infectious diseases are major drivers of global and local amphibian biodiversity loss. Therefore, developing effective disinfection methods to manage the impact of diseases in wild and captive "ark" populations are an important goal in amphibian conservation. While chemical disinfectants have been used safely and effectively in larval and adult amphibians infected with pathogenic microbes, their applicability to amphibian egg masses has remained untested. To bridge this gap, we exposed embryos of the common toad (Bufo bufo) and agile frog (Rana dalmatina) experimentally to three widely used disinfectants: voriconazole, chloramphenicol and chlorogen-sesquihydrate. For 3 days we exposed portions of egg masses to these disinfectants at 1×, 2×, 5× and 10× the concentration recommended for the disinfection of tadpoles and adults. Subsequently, we recorded embryonic and larval survival, as well as larval body mass and the incidence of abnormalities 12 days after hatching. Application of voriconazole had species- and concentration-dependent negative impacts on survival and body mass, and caused marked malformations in the viscerocranial structure of B. bufo tadpoles. Exposure to chlorogen-sesquihydrate also resulted in significant mortality in B. bufo embryos and negatively affected body mass of R. dalmatina larvae. Chloramphenicol had little negative effects on embryos or larvae in either species. Based on these results, the application of voriconazole and chlorogen-sesquihydrate cannot be recommended for the disinfection of amphibian eggs, whereas treatment with chloramphenicol appears to be a safe method for eliminating potential pathogens from anuran egg masses and their immediate aquatic environment.
Collapse
Affiliation(s)
- János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
6
|
Pourhajibagher M, Bahador A. An in vivo evaluation of microbial diversity before and after the photo-activated disinfection in primary endodontic infections: Traditional phenotypic and molecular approaches. Photodiagnosis Photodyn Ther 2018; 22:19-25. [DOI: 10.1016/j.pdpdt.2018.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
|
7
|
Bactericidal activity of N-chlorotaurine against biofilm-forming bacteria grown on metal disks. Antimicrob Agents Chemother 2014; 58:2235-9. [PMID: 24492358 DOI: 10.1128/aac.02700-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies.
Collapse
|