1
|
Pereira SDC, Manhães-de-Castro R, Souza VDS, Calado CMSDS, Souza de Silveira B, Barbosa LNF, Torner L, Guzmán-Quevedo O, Toscano AE. Neonatal resveratrol treatment in cerebral palsy model recovers neurodevelopment impairments by restoring the skeletal muscle morphology and decreases microglial activation in the cerebellum. Exp Neurol 2024; 378:114835. [PMID: 38789024 DOI: 10.1016/j.expneurol.2024.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cerebral Palsy (CP) is the main motor disorder in childhood resulting from damage to the developing brain. Treatment perspectives are required to reverse the primary damage caused by the early insult and consequently to recover motor skills. Resveratrol has been shown to act as neuroprotection with benefits to skeletal muscle. This study aimed to investigate the effects of neonatal resveratrol treatment on neurodevelopment, skeletal muscle morphology, and cerebellar damage in CP model. Wistar rat pups were allocated to four experimental groups (n = 15/group) according CP model and treatment: Control+Saline (CS), Control+Resveratrol (CR), CP + Saline (CPS), and CP + Resveratrol (CPR). CP model associated anoxia and sensorimotor restriction. CP group showed delay in the disappearance of the palmar grasp reflex (p < 0.0001) and delay in the appearance of reflexes of negative geotaxis (p = 0.01), and free-fall righting (p < 0.0001), reduced locomotor activity and motor coordination (p < 0.05) than CS group. These motor skills impairments were associated with a reduction in muscle weight (p < 0.001) and area and perimeter of soleus end extensor digitorum longus muscle fibers (p < 0.0001), changes in muscle fibers typing pattern (p < 0.05), and the cerebellum showed signs of neuroinflammation due to elevated density and percentage of activated microglia in the CPS group compared to CS group (p < 0.05). CP animals treated with resveratrol showed anticipation of the appearance of negative geotaxis and free-fall righting reflexes (p < 0.01), increased locomotor activity (p < 0.05), recovery muscle fiber types pattern (p < 0.05), and reversal of the increase in density and the percentage of activated microglia in the cerebellum (p < 0.01). Thus, we conclude that neonatal treatment with resveratrol can contribute to the recovery of the delay neurodevelopment resulting from experimental CP due to its action in restoring the skeletal muscle morphology and reducing neuroinflammation from cerebellum.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Beatriz Souza de Silveira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Letícia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Centro Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
2
|
Gómez-Barroso M, Vargas-Vargas MA, Peña-Montes DJ, Cortés-Rojo C, Saavedra-Molina A, Sánchez-Duarte E, Rodríguez-Orozco AR, Montoya-Pérez R. Comparative Effect of Three Different Exercise Intensities in Combination with Diazoxide on Contraction Capacity and Oxidative Stress of Skeletal Muscle in Obese Rats. BIOLOGY 2022; 11:biology11091367. [PMID: 36138845 PMCID: PMC9495795 DOI: 10.3390/biology11091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Obesity is a growing public health problem worldwide. It is a pathological state that degrades the proper functioning of skeletal muscle. Diazoxide treatment and exercise have been shown to generally improve muscle function. However, the effect that each of the different exercise intensities has when combined with diazoxide on the contraction capacity, resistance to fatigue and oxidative stress levels in rat skeletal muscle is unknown. Therefore, this work focused on analyzing which exercise intensity was more efficient in combination with diazoxide in improving muscle tissue and its metabolic capacities. The best results were obtained with low- and moderate-intensity exercise when combined with the drug. These results expected to open a window of time that allows the implementation of a constant and prolonged exercise protocol that completely reverses the harmful effects of obesity on muscle tissue and obesity itself. Abstract Obesity is a chronic disease that impairs skeletal muscle function, affects the ability to contract, and promotes the development of fatigue. For this reason, the study of treatments that seek to reduce the harmful effects of obesity on muscle tissue has been deepened. Diazoxide treatment and various exercise protocols have been proposed to protect skeletal muscle against oxidative stress and its effects. However, the intensity and duration of exercise combined with diazoxide that would obtain the best results for improving skeletal muscle function in obese rats is unknown. To this end, this study evaluated the effects of three different exercise intensities combined with diazoxide on contraction capacity, resistance to fatigue, markers of oxidative stress, lipid peroxidation, ROS, and glutathione redox status of skeletal muscle. The results showed that treatments with diazoxide and exercise at different intensities improved muscle contraction capacity by reducing oxidative stress during obesity, with the best results being obtained with low-intensity exercise in combination with diazoxide. Therefore, these results suggest that diazoxide and low-intensity exercise improve muscle function during obesity by decreasing oxidative stress with the same efficiency as a moderate-intensity exercise protocol.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Manuel A. Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato, Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León 37150, Mexico
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chavez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N Esq. Dr. Salvador González Herrejon, Bosque Cuauhtémoc, Morelia 58020, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
- Correspondence:
| |
Collapse
|
3
|
Peña-Toledo MA, Luque E, Ruz-Caracuel I, Agüera E, Jimena I, Peña-Amaro J, Tunez I. Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2021; 22:ijms22168589. [PMID: 34445295 PMCID: PMC8395284 DOI: 10.3390/ijms22168589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle is affected in experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis that produces changes including muscle atrophy; histological features of neurogenic involvement, and increased oxidative stress. In this study, we aimed to evaluate the therapeutic effects of transcranial magnetic stimulation (TMS) on the involvement of rat skeletal muscle and to compare them with those produced by natalizumab (NTZ). EAE was induced by injecting myelin oligodendrocyte glycoprotein (MOG) into Dark Agouti rats. Both treatments, NTZ and TMS, were implemented from day 15 to day 35. Clinical severity was studied, and after sacrifice, the soleus and extensor digitorum longus muscles were extracted for subsequent histological and biochemical analysis. The treatment with TMS and NTZ had a beneficial effect on muscle involvement in the EAE model. There was a clinical improvement in functional motor deficits, atrophy was attenuated, neurogenic muscle lesions were reduced, and the level of oxidative stress biomarkers was lower in both treatment groups. Compared to NTZ, the best response was obtained with TMS for all the parameters analyzed. The myoprotective effect of TMS was higher than that of NTZ. Thus, the use of TMS may be an effective strategy to reduce muscle involvement in multiple sclerosis.
Collapse
MESH Headings
- Animals
- Cell Count
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Male
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/physiopathology
- Muscular Atrophy/prevention & control
- Myelin-Oligodendrocyte Glycoprotein
- Natalizumab/pharmacology
- Rats
- Transcranial Magnetic Stimulation
Collapse
Affiliation(s)
- Maria Angeles Peña-Toledo
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Eduardo Agüera
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Jimena
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Jose Peña-Amaro
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Isaac Tunez
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministery for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| |
Collapse
|
4
|
Sánchez‐Duarte S, Márquez‐Gamiño S, Montoya‐Pérez R, Villicaña‐Gómez EA, Vera‐Delgado KS, Caudillo‐Cisneros C, Sotelo‐Barroso F, Melchor‐Moreno MT, Sánchez‐Duarte E. Nicorandil decreases oxidative stress in slow- and fast-twitch muscle fibers of diabetic rats by improving the glutathione system functioning. J Diabetes Investig 2021; 12:1152-1161. [PMID: 33503290 PMCID: PMC8264387 DOI: 10.1111/jdi.13513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 01/17/2023] Open
Abstract
AIMS/INTRODUCTION Myopathy is a common complication of any diabetes type, consisting in failure to preserve mass and muscular function. Oxidative stress has been considered one of the main causes for this condition. This study aimed to search if Nicorandil, a KATP channel opener, could protect slow- and fast-twitch diabetic rat muscles from oxidative stress, and to unveil its possible mechanisms. MATERIALS AND METHODS Diabetes was induced in male Wistar rats by applying intraperitoneally streptozotocin (STZ) at 100 mg/kg doses. Nicorandil (3 mg/kg/day) was administered along 4 weeks. An insulin tolerance test and assessment of fasting blood glucose (FBG), TBARS, reduced (GSH), and disulfide (GSSG) glutathione levels, GSH/GSSG ratio, and mRNA expression of glutathione metabolism-related genes were performed at end of treatment in soleus and gastrocnemius muscles. RESULTS Nicorandil significantly reduced FBG levels and enhanced insulin tolerance in diabetic rats. In gastrocnemius and soleus muscles, Nicorandil attenuated the oxidative stress by decreasing lipid peroxidation (TBARS), increasing total glutathione and modulating GPX1-mRNA expression in both muscle's types. Nicorandil also increased GSH and GSH/GSSG ratio and downregulated the GCLC- and GSR-mRNA in gastrocnemius, without significative effect on those enzymes' mRNA expression in diabetic soleus muscle. CONCLUSIONS In diabetic rats, Nicorandil attenuates oxidative stress in slow- and fast-twitch skeletal muscles by improving the glutathione system functioning. The underlying mechanisms for the modulation of glutathione redox state and the transcriptional expression of glutathione metabolism-related genes seem to be fiber type-dependent.
Collapse
Affiliation(s)
- Sarai Sánchez‐Duarte
- Instituto de Investigaciones Químico‐BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMichoacánMéxico
| | - Sergio Márquez‐Gamiño
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | - Rocío Montoya‐Pérez
- Instituto de Investigaciones Químico‐BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMichoacánMéxico
| | | | - Karla Susana Vera‐Delgado
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | | | - Fernando Sotelo‐Barroso
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | - Ma Teresa Melchor‐Moreno
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | - Elizabeth Sánchez‐Duarte
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| |
Collapse
|
5
|
Vesentini G, Marini G, Piculo F, Damasceno DC, Matheus SMM, Felisbino SL, Calderon IMP, Hijaz A, Barbosa AMP, Rudge MVC. Morphological changes in rat rectus abdominis muscle induced by diabetes and pregnancy. ACTA ACUST UNITED AC 2018. [PMID: 29513796 PMCID: PMC5856447 DOI: 10.1590/1414-431x20177035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The urethral muscle of diabetic pregnant rats is affected by long-term mild diabetes and short-term severe diabetes, which plays a crucial role in the pathogenesis of pelvic floor disorders. We hypothesized that muscles outside the pelvis are subject to similar changes. The current study aimed at analyzing the effects of long-term mild and short-term severe diabetes on the structure and ultrastructure of fiber muscles and collagen in rats' rectus abdominis (RA) muscle. Therefore, the RA muscle of virgin, pregnant, long-term mild diabetic, short-term severe diabetic, long-term mild diabetic pregnant and short-term severe diabetic pregnant 3-month-old Wistar rats were collected. The structure was analyzed by picrosirius red staining, immunohistochemistry for fast and slow muscle fibers and transmission electron microscopy. We investigated two levels of STZ- induced diabetes: long-term mild diabetes (blood glucose level: 120–200 mg/dL) and short-term severe diabetes (blood glucose level >300 mg/dL). Long-term mild diabetic pregnant and short-term severe diabetic pregnant rats had decreased fast fibers and increased slow fibers, disrupted areas of sarcomere, intermyofibrillar mitochondria and myelin figures in the RA muscle. Both groups enabled us to analyze the specific influence of pregnancy, separately from diabetes. The current study demonstrated that diabetes and pregnancy induced intramuscular transformation and reorganization of RA muscle with a switch of fiber type adjusting their architecture according to intensity and duration of hyperglycemic insult within pregnancy.
Collapse
Affiliation(s)
- G Vesentini
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, SP, Brasil
| | - G Marini
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, SP, Brasil.,Departamento de Ciências da Saúde, Universidade do Sagrado Coração, SP, Brasil
| | - F Piculo
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, SP, Brasil
| | - D C Damasceno
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, SP, Brasil
| | - S M M Matheus
- Departamento de Anatomia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, SP, Brasil
| | - S L Felisbino
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, SP, Brasil
| | - I M P Calderon
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, SP, Brasil
| | - A Hijaz
- Department of Urology, Urology Institute, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - A M P Barbosa
- Departamento de Fisioterapia e Terapia Ocupacional, Universidade Estadual Paulista, SP, Brasil
| | - M V C Rudge
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, SP, Brasil
| |
Collapse
|
6
|
Nonaka K, Une S, Komatsu M, Yamaji R, Akiyama J. Heat stress prevents the decrease in succinate dehydrogenase activity in the extensor digitorum longus of streptozotocin-induced diabetic rats. Physiol Res 2017; 67:117-126. [PMID: 29137485 DOI: 10.33549/physiolres.933617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate whether heat stress (HS) prevents a decrease in succinate dehydrogenase (SDH) activity and heat shock protein 60 (HSP60) and superoxide dismutase 2 (SOD2) contents in the extensor digitorum longus of streptozotocin (STZ)-induced diabetic rats. Twelve-week-old male Wistar rats were assigned to one of the four groups (n=6/group): control (Con), HS, diabetes mellitus (DM), and diabetes mellitus and heat stress (DM+HS). Diabetes was induced by the administration of STZ (50 mg/kg). HS was initiated 7 days after STZ treatment and performed at 42 °C for 30 min 5 times a week for 3 weeks. SDH activity was decreased in the DM and DM+HS groups. However, SDH activity was greater in the DM+HS group than in the DM group. Although HSP60 content was lower in the DM group than in the Con group, it was maintained in the DM+HS groups and was higher than that in the DM group. SOD2 content was decreased only in the DM group. These findings suggest that HS prevents the decrease in SDH activity in the skeletal muscle induced by DM. According to this mechanism, the maintenance of SOD2 and HSP60 by HS may suppress the increase in oxidative stress.
Collapse
Affiliation(s)
- K Nonaka
- Faculty of Health Sciences, Kyoto Tachibana University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
7
|
Emrani R, Rébillard A, Lefeuvre L, Gratas-Delamarche A, Davies KJA, Cillard J. The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle. Free Radic Biol Med 2015; 87:290-9. [PMID: 26122706 DOI: 10.1016/j.freeradbiomed.2015.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
Abstract
The aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Ramin Emrani
- Laboratory of Movement, Sport & Health Sciences (EA 1274), Faculty of Pharmacy, University Rennes 1, 35043 Rennes Cédex, France
| | - Amélie Rébillard
- Laboratory of Movement, Sport & Health Sciences, University Rennes 2, Ecole Normale Supérieure Rennes, 35170 Bruz, France
| | - Luz Lefeuvre
- Laboratory of Movement, Sport & Health Sciences, University Rennes 2, Ecole Normale Supérieure Rennes, 35170 Bruz, France
| | - Arlette Gratas-Delamarche
- Laboratory of Movement, Sport & Health Sciences, University Rennes 2, Ecole Normale Supérieure Rennes, 35170 Bruz, France
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, and Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Josiane Cillard
- Laboratory of Movement, Sport & Health Sciences (EA 1274), Faculty of Pharmacy, University Rennes 1, 35043 Rennes Cédex, France.
| |
Collapse
|