1
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
2
|
Moratalla-López N, Parizad S, Habibi MK, Winter S, Kalantari S, Bera S, Lorenzo C, García-Rodríguez MV, Dizadji A, Alonso GL. Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Food Chem 2020; 337:127786. [PMID: 32795861 DOI: 10.1016/j.foodchem.2020.127786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
The dehydration process is a prerequisite to preserve saffron for a long time. According to this process, saffron shows differences in the main compounds responsible for its quality (colour, taste, aroma, and flavonol content). At present, the freeze-drying method obtains dried products with the highest quality. Viruses can modify the physiology and metabolism of plants, being able to affect the activities of several enzymes. For this reason, the main compounds of saffron have been analyzed under two different dehydrating processes, freeze-drying and dark-drying, considering their infection status with the Saffron latent virus (SaLV). Results showed that the picrocrocin and safranal content enables to differ dark-dried samples from freeze-dried ones. Besides, the kaempferol-3-O-sophoroside-7-O-glucoside content allows differentiating between SaLV-infected (SaLV+) and uninfected (SaLV-) saffron samples. Moreover, our data suggest that the freeze-drying would decrease crocins content, and dark-drying can nullify the adverse effect of SaLV on crocins content.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - Shirin Parizad
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Mina Koohi Habibi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Stephan Winter
- German Collection of Microorganisms and Cell Cultures, DSMZ, Braunschweig, Germany.
| | - Siamak Kalantari
- Department of Horticultural Science, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Sayanta Bera
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY 14853, USA.
| | - Candida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - M Valle García-Rodríguez
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | - Akbar Dizadji
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran.
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
3
|
Kumar S, Dhembla C, P H, Sundd M, Patel AK. Differential expression of structural and functional proteins during bean common mosaic virus-host plant interaction. Microb Pathog 2019; 138:103812. [PMID: 31669830 DOI: 10.1016/j.micpath.2019.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Bean common mosaic virus (BCMV), the most common seed-borne pathogen in Phaseolus vulgaris L. is known to cause severe loss in productivity across the globe. In the present study, proteomic analyses were performed for leaf samples from control (healthy) and susceptible BCMV infected plants. The differential expression of proteins was evaluated using two-dimensional gel electrophoresis (2-DE). Approximately, 1098 proteins were spotted, amongst which 107 proteins were observed to be statistically significant with differential expression. The functional categorization of the differential proteins illustrated that they were involved in biotic/abiotic stress (18%), energy and carbon metabolism (11%), photosynthesis (46%), protein biosynthesis (10%), chaperoning (5%), chlorophyll (5%) and polyunsaturated fatty acid biosynthesis (5%). This is the first report on the comparative proteome study of compatible plant-BCMV interactions in P. vulgaris which contributes largely to the understanding of protein-mediated disease resistance/susceptible mechanisms.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Chetna Dhembla
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
4
|
Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in Plant-Virus Interaction. Front Microbiol 2016; 7:1565. [PMID: 27757106 PMCID: PMC5047884 DOI: 10.3389/fmicb.2016.01565] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
| |
Collapse
|
5
|
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China; State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University Beijing, China
| |
Collapse
|
6
|
Rys M, Juhász C, Surówka E, Janeczko A, Saja D, Tóbiás I, Skoczowski A, Barna B, Gullner G. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:267-78. [PMID: 25194777 DOI: 10.1016/j.plaphy.2014.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/14/2014] [Indexed: 05/04/2023]
Abstract
Leaves of a pepper cultivar harboring the L(3) resistance gene were inoculated with Obuda pepper virus (ObPV), which led to the appearance of hypersensitive necrotic lesions approx. 72 h post-inoculation (hpi) (incompatible interaction), or with Pepper mild mottle virus (PMMoV) that caused no visible symptoms on the inoculated leaves (compatible interaction). ObPV inoculation of leaves resulted in ion leakage already 18 hpi, up-regulation of a pepper carotenoid cleavage dioxygenase (CCD) gene from 24 hpi, heat emission and declining chlorophyll a content from 48 hpi, and partial desiccation from 72 hpi. After the appearance of necrotic lesions a strong inhibition of photochemical energy conversion was observed, which led to photochemically inactive leaf areas 96 hpi. However, leaf tissues adjacent to these inactive areas showed elevated ΦPSII and Fv/Fm values proving the advantage of chlorophyll a imaging technique. PMMoV inoculation also led to a significant rise of ion leakage and heat emission, to the up-regulation of the pepper CCD gene as well as to decreased PSII efficiency, but these responses were much weaker than in the case of ObPV inoculation. Chlorophyll b and total carotenoid contents as measured by spectrophotometric methods were not significantly influenced by any virus inoculations when these pigment contents were calculated on leaf surface basis. On the other hand, near-infrared FT-Raman spectroscopy showed an increase of carotenoid content in ObPV-inoculated leaves suggesting that the two techniques detect different sets of compounds.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 21 Niezapominajek, PL-30239 Kraków, Poland
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 21 Niezapominajek, PL-30239 Kraków, Poland
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 21 Niezapominajek, PL-30239 Kraków, Poland
| | - Diana Saja
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 21 Niezapominajek, PL-30239 Kraków, Poland
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Andrzej Skoczowski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 21 Niezapominajek, PL-30239 Kraków, Poland
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.
| |
Collapse
|
7
|
Liu J, Yang J, Bi H, Zhang P. Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:122-32. [PMID: 24237761 DOI: 10.1111/jipb.12133] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/11/2013] [Indexed: 05/18/2023]
Abstract
Cassava mosaic disease, caused by cassava begomoviruses, is the most serious disease for cassava in Africa. However, the pathogenesis of this disease is poorly understood. We employed high throughput digital gene expression profiling based on the Illumina Solexa sequencing technology to investigate the global transcriptional response of cassava to African cassava mosaic virus infection. We found that 3,210 genes were differentially expressed in virus-infected cassava leaves. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that genes implicated in photosynthesis were most affected, consistent with the chlorotic symptoms observed in infected leaves. The upregulation of chlorophyll degradation genes, including the genes encoding chlorophyllase, pheophytinase, and pheophorbide a oxygenase, and downregulation of genes encoding the major apoproteins in light-harvesting complex II were confirmed by qRT-PCR. These findings, together with the reduction of chlorophyll b content and fewer grana stacks in the infected leaf cells, reveal that the degradation of chlorophyll plays an important role in African cassava mosaic virus symptom development. This study will provide a road map for future investigations into viral pathogenesis.
Collapse
Affiliation(s)
- Jiao Liu
- Shanghai Chenshan Plant Science Research Center, the Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai, 201602, China; National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Science, Shanghai, 200032, China
| | | | | | | |
Collapse
|
8
|
Nanda RM, Biswal B. Biotic stress induced demolition of thylakoid structure and loss in photoelectron transport of chloroplasts in papaya leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:461-468. [PMID: 18328719 DOI: 10.1016/j.plaphy.2007.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Indexed: 05/26/2023]
Abstract
Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.
Collapse
Affiliation(s)
- Rashmi Madhumita Nanda
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Orissa, India
| | | |
Collapse
|
9
|
Pérez-Bueno ML, Ciscato M, VandeVen M, García-Luque I, Valcke R, Barón M. Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. PHOTOSYNTHESIS RESEARCH 2006; 90:111-23. [PMID: 17203361 DOI: 10.1007/s11120-006-9098-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 08/18/2006] [Indexed: 05/04/2023]
Abstract
We have studied by kinetic Chl-fluorescence imaging (Chl-FI) Nicotiana benthamiana plants infected with the Italian strain of the pepper mild mottle tobamovirus (PMMoV-I). We have mapped leaf photosynthesis at different points of the fluorescence induction curve as well as at different post-infection times. Images of different fluorescence parameters were obtained to investigate which one could discriminate control from infected leaves in the absence of symptoms. The non-photochemical quenching (NPQ) of excess energy in photosystem II (PSII) seems to be the most adequate chlorophyll fluorescence parameter to assess the effect of tobamoviral infection on the chloroplast. Non-symptomatic mature leaves from inoculated plants displayed a very characteristic time-varying NPQ pattern. In addition, a correlation between NPQ amplification and virus localization by tissue-print was found, suggesting that an increase in the local NPQ values is associated with the areas invaded by the pathogen. Changes in chloroplast ultrastructure in non-symptomatic leaf areas showing different NPQ levels were also investigated. A gradient of ultrastructural modifications was observed among the different areas.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Plant Biology Department, Centro Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | | | | | | | | | | |
Collapse
|