1
|
Miciński B, Jana B, Całka J. Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts. Animals (Basel) 2022; 12:ani12131676. [PMID: 35804576 PMCID: PMC9264917 DOI: 10.3390/ani12131676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Endometritis, both with non-infectious and infectious backgrounds, is one of the most prevalent pathological states among domestic animals. In animals, it generates severe economic problems, including lowered reproductive indices and rising medical treatment costs, and in women, it might lead to severe fertility impairment. In order to determine how the autonomic nervous system responds to such a pathological state, an experimental group of pigs were treated with Escherichia coli injection into the uterine horns, and several ganglions responsible for innervation of this organ were examined, including the paracervical ganglion located on both sides of the broad ligament of the uterus. The results clearly showed a strong impact of the inflammation on the chemical coding of neurons, some even synthesizing neurotransmitters de novo such as the GAL-expressing perikarya. Additionally, applied injections decreased the number of parasympathetic, acetylcholinesterase-expressing neurons implying the importance of the cholinergic population to keep the inflammation under control. The obtained data serve as a basis for the future implementation of modern treatment and enhancements in animal breeding. Abstract The focus of this study was based on examining the impact of endometritis on the chemical coding of the paracervical ganglion (PCG) perikaryal populations supplying pig uterus. Four weeks after the injection of Fast Blue retrograde tracer into uterine horns, either the Escherichia coli (E. coli) suspension or saline solution was applied to both horns. Laparotomy treatment was performed for the control group. Uterine cervices containing PCG were extracted on the eighth day after previous treatments. Subsequent macroscopic and histopathologic examinations acknowledged the severe form of acute endometritis in the E. coli-treated gilts, whereas double-labeling immunofluorescence procedures allowed changes to be analyzed in the PCG perikaryal populations coded with vesicular acetylcholine transporter (VAChT) and/or somatostatin (SOM), vasoactive intestinal polypeptide (VIP), a neuronal isoform of nitric oxide synthase (nNOS), galanin (GAL). The acetylcholinesterase (AChE) detection method was used to check for the presence and changes in the expression of this enzyme and further confirm the presence of cholinergic perikarya in PCG. Treatment with E. coli resulted in an increase in VAChT+/VIP+, VAChT+/VIP−, VAChT+/SOM+, VAChT+/SOM−, VAChT+/GAL− and VAChT+/nNOS− PCG uterine perikarya. An additional increase was noted in the non-cholinergic VIP-, SOM- and nNOS-immunopositive populations, as well as a decrease in the number of cholinergic nNOS-positive perikarya. Moreover, the population of cholinergic GAL-expressing perikarya that appeared in the E. coli-injected gilts and E. coli injections lowered the number of AChE-positive perikarya. The neurochemical characteristics of the cholinergic uterine perikarya of the PCG were altered and influenced by the pathological state (inflammation of the uterus). These results may indicate the additional influence of such a state on the functioning of this organ.
Collapse
Affiliation(s)
- Bartosz Miciński
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 11-041 Olsztyn, Poland;
- Correspondence: (B.M.); (B.J.); Tel.: +48-89-523-44-61 (B.M.); +48-89-539-31-37 (B.J.)
| | - Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: (B.M.); (B.J.); Tel.: +48-89-523-44-61 (B.M.); +48-89-539-31-37 (B.J.)
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 11-041 Olsztyn, Poland;
| |
Collapse
|
2
|
Mazur U, Lepiarczyk E, Janikiewicz P, Bossowska A. Somatostatin immunoreactivity within the urinary bladder nerve fibers and paracervical ganglion urinary bladder projecting neurons in the female pig. J Chem Neuroanat 2021; 117:102007. [PMID: 34314850 DOI: 10.1016/j.jchemneu.2021.102007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
The study was designed to examine the distribution and chemical coding of somatostatin-immunoreactive (SOM-IR) nerve fibers supplying the urinary bladder wall and to establish the distribution and immunohistochemical characteristics of the subpopulation of paracervical ganglion (PCG) SOM-IR neurons projecting to this organ in female pigs. The PCG-urinary bladder projecting neurons (PCG-UBPN) were visualized with retrograde neuronal tracer Fast Blue (FB). Double-labeling immunohistochemistry performed on cryostat sections from the urinary bladder wall revealed that the greatest density of SOM-IR nerve fibers was found in the muscle layer and around blood vessels, a moderate number of these nerve terminals supplied the submucosa and only single SOM-IR axons were encountered beneath the urothelium. In all the investigated sections the vast majority of SOM-IR nerve fibers were immunopositive to vesicular acetylcholine transporter (VAChT) and many SOM-IR axons contained immunoreactivity to neuropeptide Y (NPY). Approximately 65 % of FB-positive (FB+) PCG-UBPN were immunoreactive to SOM. Moreover, PCG FB+/SOM + nerve cells were simultaneously immunoreactive to choline acetyltransferase (ChAT; 64.6 ± 0.6 %), NPY (59.7 ± 1.2 %), neuronal nitric oxide synthase (nNOS; 46.1 ± 0.7 %), vasoactive intestinal polypeptide (VIP; 29.9 ± 2.2 %), Leu5-enkephalin (L-ENK; 19.5 ± 6.3 %), dopamine β-hydroxylase (DβH; 14.9 ± 1.9 %) or pituitary adenylate cyclase-activating polypeptide (PACAP; 14.8 ± 2.4 %). The present study reveals the extensive expression of SOM in both the nerve fibres supplying the porcine urinary bladder wall and the PCG neurons projecting to this organ, indicating an important regulatory role of SOM in the control of the urinary bladder function.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland.
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland.
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland.
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland.
| |
Collapse
|
3
|
Miciński B, Jana B, Całka J. Endometritis decreases the population of uterine neurons in the paracervical ganglion and changes the expression of sympathetic neurotransmitters in sexually mature gilts. BMC Vet Res 2021; 17:240. [PMID: 34246257 PMCID: PMC8272255 DOI: 10.1186/s12917-021-02949-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The focus of the study was to examine the impact of the inflamed uterus on the population of the paracervical ganglion (PCG) uterus-innervating perikarya and their chemical coding. Fast Blue retrograde tracer was injected into the wall of uterine horns on the 17th day of the first studied estrous cycle. After 28 days, either Escherichia coli suspension or saline was applied to the horns of the uterus, whereas the control group received laparotomy only. Eight days after the above-mentioned procedures, uterine cervices with PCG were collected. Both macroscopic and histopathologic examinations confirmed severe acute endometritis in the Escherichia coli-injected uteri. The double immunofluorescence method was used to analyze changes in the PCG populations coded with dopamine-β-hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP) and neuronal isoform of nitric oxide synthase (nNOS). RESULTS The use of Escherichia coli lowered the total number of Fast Blue-positive neurons. Moreover, an increase in DβH+/VIP+, DβH+/NPY+, DβH+/SOM + and DβH+/nNOS + expressing perikarya was noted. A rise in non-noradrenergic VIP-, SOM- and nNOS-immunopositive populations was also recorded, as well as a drop in DβH-positive neurotransmitter-negative neurons. CONCLUSIONS To sum up, inflammation of the uterus has an impact on the neurochemical properties of the uterine perikarya in PCG, possibly affecting the functions of the organ.
Collapse
Affiliation(s)
- Bartosz Miciński
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
4
|
Liliana R, Slawomir G, Tomasz J, Joanna W, Andrzej P. The effects of Bisphenol A (BPA) on sympathetic nerve fibers in the uterine wall of the domestic pig. Reprod Toxicol 2018; 84:39-48. [PMID: 30562551 DOI: 10.1016/j.reprotox.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA), used in the production of plastic, shows multidirectional negative effects on the living organism. BPA may affect the reproductive and nervous systems; however, its influence on the nerves supplying the uterus has not been studied. During the present study, the impact of BPA on the sympathetic nerves in the uterus was investigated using a double immunofluorescence technique. The results have shown that even low doses of BPA may change the neurochemical characterization of uterine sympathetic nerves, and the severity of these changes depends on the part of the uterus and the dose of the toxic substance. Probably the changes observed during the present study resulted from the neurotoxic and/or pro-inflammatory activity of BPA, but the exact mechanism for the observed fluctuation still remains unknown. The fluctuations of the neurochemical characterization of the uterine intramural nerves may be the first subclinical signs of harmful exposure to BPA.
Collapse
Affiliation(s)
- Rytel Liliana
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland.
| | - Gonkowski Slawomir
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland
| | - Janowski Tomasz
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland
| | - Wojtkiewicz Joanna
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Poland
| | - Pomianowski Andrzej
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland
| |
Collapse
|
5
|
The Influence of Tetrodotoxin (TTX) on the Distribution and Chemical Coding of Caudal Mesenteric Ganglion (CaMG) Neurons Supplying the Porcine Urinary Bladder. Mar Drugs 2017; 15:md15040101. [PMID: 28358321 PMCID: PMC5408247 DOI: 10.3390/md15040101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/25/2023] Open
Abstract
The treatment of micturition disorders creates a serious problem for urologists. Recently, new therapeutic agents, such as neurotoxins, are being considered for the therapy of urological patients. The present study investigated the chemical coding of caudal mesenteric ganglion (CaMG) neurons supplying the porcine urinary bladder after intravesical instillation of tetrodotoxin (TTX). The CaMG neurons were visualized with retrograde tracer Fast blue (FB) and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against tyrosine hydroxylase (TH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), calbindin (CB), galanin (GAL) and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 6) and TTX-treated pigs (n = 6), the vast majority (92.6% ± 3.4% and 88.8% ± 2%, respectively) of FB-positive (FB+) nerve cells were TH+. TTX instillation caused a decrease in the number of FB+/TH+ neurons immunopositive to NPY (88.9% ± 5.3% in the control animals vs. 10.6% ± 5.3% in TTX-treated pigs) or VIP (1.7% ± 0.6% vs. 0%), and an increase in the number of FB+/TH+ neurons immunoreactive to SOM (8.8% ± 1.6% vs. 39% ± 12.8%), CB (1.8% ± 0.7% vs. 12.6% ± 2.7%), GAL (1.7% ± 0.8% vs. 10.9% ± 2.6%) or nNOS (0% vs. 1.1% ± 0.3%). The present study is the first to suggest that TTX modifies the chemical coding of CaMG neurons supplying the porcine urinary bladder.
Collapse
|
6
|
The influence of intravesical administration of resiniferatoxin (RTX) on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder. Histochem Cell Biol 2015; 144:479-89. [PMID: 26194530 DOI: 10.1007/s00418-015-1355-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Abstract
Resiniferatoxin (RTX) is used as an experimental drug in therapy of neurogenic urinary bladder disorders. The present study investigated the chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after intravesical RTX instillation. The SChG neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against dopamine β-hydroxylase (DβH; marker of noradrenergic neurons), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin, Leu(5)-enkephalin and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 5) and RTX-treated pigs (n = 5), the vast majority (90.4 ± 2.8 and 89.7 ± 2.3%, respectively) of FB-positive (FB+) nerve cells were DβH+. RTX instillation caused a decrease in the number of FB+/DβH+ neurons immunopositive to NPY (71.1 ± 12.1 vs 43.2 ± 6.7%), VIP (21.3 ± 10.7 vs 5.3 ± 4.3%) or SOM (16.5 ± 4.6 vs 2.3 ± 2.6%) and a distinct increase in the number of FB+/DβH+ neurons immunoreactive to nNOS (0.8 ± 1 vs 5.3 ± 1.9 %). The present study for the first time has provided some information that therapeutic effects of RTX on the mammalian urinary bladder can be partly mediated by SChG neurons.
Collapse
|
7
|
Gamé X, Rischmann P, Arnal JF, Malavaud B. Voie du monoxyde d’azote et bas appareil urinaire féminin. Rôles physiologique et physiopathologique. Prog Urol 2013; 23:926-35. [DOI: 10.1016/j.purol.2013.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/30/2013] [Accepted: 07/03/2013] [Indexed: 12/27/2022]
|
8
|
Burliński PJ, Burlińska AM, Gonkowski S, Całka J. Resiniferatoxin and tetrodotoxin induced NPY and TH immunoreactivity changes within the paracervical ganglion neurons supplying the urinary bladder. J Mol Neurosci 2012; 49:62-7. [PMID: 23054585 PMCID: PMC3532721 DOI: 10.1007/s12031-012-9889-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
Both resiniferatoxin (RTX) and tetrodotoxin (TTX) have been reported to be effective in several urinary bladder dysfunction clinical trials. The aim of this study was to establish the effect of intravesical administration of RTX and TTX on neuropeptides Y (NPY) and tyrosine hydroxylase (TH) relationship in the paracervical ganglion (PCG) neurons supplying the urinary bladder in the pig. TH is an enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to dihydroxyphenylalanine (DOPA) and is used as a marker of catecholaminergic neurons. NPY augments the vasoconstrictor effects of noradrenergic neurons, and is involved in pathophysiological processes as a neuromodulator. To identify the PCG neurons supplying urinary bladder Fast Blue (FB) was injected into the bladder wall prior to intravesical RTX or TTX administration. Consequent application of immunocytochemical methods revealed that in control group 64.08 % of FB-positive PCG neurons contain NPY and 4.25 % TH. Intravesical infusion of RTX resulted upregulation of the NPY-IR neurons to 82.97 % and TH-IR to 43.78 %. Also administration of TTX induced further increase number of TH-IR neurons to 77.49 % but induced decrease number of NPY-IR neurons to 57.45 %. Both neurotoxins affect chemical coding of the PCG neural somata supplying urinary bladder, but the effects of their action are different. This results shed light on possible involvement of RTX and TTX on curing tissue, and potentially could help us to broaden our neurourological armamentarium.
Collapse
|
9
|
Burliński P, Czujkowska A, Arciszewski M, Całka J. Upregulation of LENK and VIP in paracervical ganglion neurons supplying the urinary bladder of tetrodotoxin- and resiniferatoxin-treated female pigs. Acta Vet Hung 2012; 60:383-93. [PMID: 22903083 DOI: 10.1556/avet.2012.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Both resiniferatoxin (RTX) and tetrodotoxin (TTX) have been reported to be effective in several clinical trials aiming to cure urinary bladder dysfunction. The goal of this experiment was to study the effect of intravesical administration of RTX and TTX on the chemical coding of paracervical ganglion (PCG) neurons that supply the urinary bladder in pigs. The vasoactive intestinal peptide (VIP) and the opioid family member Leu5-enkephalin (LENK) are both known for their regulatory effects in the function of the porcine genitourinary tract. The PCG neurons innervating the urinary bladder were identified by application of the retrograde tracer Fast Blue (FB), injected into the bladder wall prior to intravesical RTX or TTX administration. Immunocytochemical detection of LENK and VIP expression in the FB-labelled perikarya revealed that in the control group 25.15% of the FB-positive PCG neurons contained LENK, and 9.22% of them expressed VIP. Intravesical infusion of RTX resulted in an increase in the number of LENKIR neurons to 48.19% and VIP-IR perikarya to 11.25%. Optional treatment with TTX induced increase of LENK-IR neurons up to 81.67% and VIP-IR population to 16.46% of the FB-positive PCG cells. The present results show that both neurotoxins affect the chemical coding of PCG nervous cells supplying the porcine urinary bladder and that they stimulate both LENK and VIP expression. Furthermore, the results indicate a possible involvement of LENK and VIP neurons in the mechanisms of action of RTX and TTX in the therapy of overactive bladder disorder.
Collapse
Affiliation(s)
- Piotr Burliński
- 1 University of Warmia and Mazury Department of Clinical Physiology, Faculty of Veterinary Medicine Oczapowskiego 13 10-719 Olsztyn Poland
| | - Agnieszka Czujkowska
- 2 University of Life Sciences Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine Lublin Poland
| | - Marcin Arciszewski
- 2 University of Life Sciences Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine Lublin Poland
| | - Jarosław Całka
- 1 University of Warmia and Mazury Department of Clinical Physiology, Faculty of Veterinary Medicine Oczapowskiego 13 10-719 Olsztyn Poland
| |
Collapse
|