1
|
The Entamoeba lysine and glutamic acid rich protein (KERP1) virulence factor gene is present in the genomes of Entamoeba nuttalli, Entamoeba dispar and Entamoeba moshkovskii. Mol Biochem Parasitol 2020; 238:111293. [PMID: 32535195 DOI: 10.1016/j.molbiopara.2020.111293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/23/2022]
Abstract
The lysine and glutamic acid rich protein KERP1 is a cell surface-expressed virulence factor in the human pathogen Entamoeba histolytica. It was originally suggested that the gene was absent from the related, avirulent human commensal Entamoeba dispar, an absence which would be relevant to the differential virulence of these species. Here, the gene is shown to be present in E. dispar, and its sequence is presented, as well as in a virulent parasite of macaques, Entamoeba nuttalli, and the primarily free living, opportunistically parasitic Entamoeba moshkovskii.
Collapse
|
2
|
Bonner M, Fresno M, Gironès N, Guillén N, Santi-Rocca J. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol 2018; 8:379. [PMID: 30420943 PMCID: PMC6215854 DOI: 10.3389/fcimb.2018.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The protozoan Entamoeba gingivalis resides in the oral cavity and is frequently observed in the periodontal pockets of humans and pets. This species of Entamoeba is closely related to the human pathogen Entamoeba histolytica, the agent of amoebiasis. Although E. gingivalis is highly enriched in people with periodontitis (a disease in which inflammation and bone loss correlate with changes in the microbial flora), the potential role of this protozoan in oral infectious diseases is not known. Periodontitis affects half the adult population in the world, eventually leads to edentulism, and has been linked to other pathologies, like diabetes and cardiovascular diseases. As aging is a risk factor for the disorder, it is considered an inevitable physiological process, even though it can be prevented and cured. However, the impact of periodontitis on the patient's health and quality of life, as well as its economic burden, are underestimated. Commonly accepted models explain the progression from health to gingivitis and then periodontitis by a gradual change in the identity and proportion of bacterial microorganisms in the gingival crevices. Though not pathognomonic, inflammation is always present in periodontitis. The recruitment of leukocytes to inflamed gums and their passage to the periodontal pocket lumen are speculated to fuel both tissue destruction and the development of the flora. The individual contribution to the disease of each bacterial species is difficult to establish and the eventual role of protozoa in the fate of this disease has been ignored. Following recent scientific findings, we discuss the relevance of these data and propose that the status of E. gingivalis be reconsidered as a potential pathogen contributing to periodontitis.
Collapse
Affiliation(s)
- Mark Bonner
- International Institute of Periodontology Victoriaville, QC, Canada
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Nancy Guillén
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | | |
Collapse
|
3
|
St-Pierre J, Moreau F, Cornick S, Quach J, Begum S, Aracely Fernandez L, Gorman H, Chadee K. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog 2017; 13:e1006592. [PMID: 28837696 PMCID: PMC5587335 DOI: 10.1371/journal.ppat.1006592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/06/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. The protozoan parasite Entamoeba histolytica can establish an enteric infection in human hosts that leads to symptoms ranging from diarrhea to abscesses in the liver and the brain. Host susceptibility to amebic infection is in part determined by the quality and potency of the host immune response that occurs once the parasite overcomes the mucus bilayers and colonic epithelial barriers, and invades underlying tissues. At the cellular level, one of the key events that shape the inflammatory response occurs during direct parasite interaction with host macrophages via surface proteins. The ensuing cascades of intracellular signaling events have only partly been uncovered. Interestingly, only direct interaction between live parasites and macrophages, as opposed to soluble factors or dead parasites, is a prerequisite to the generation of a prompt raging pro-inflammatory response. We have sought to further elucidate the mechanisms by which macrophages distinguish live parasites and found that the macrophage cell skeleton undergoes rapid significant alteration upon Eh contact. Furthermore, we uncovered a previously unknown role for two Eh enzymes in triggering macrophage pro-inflammatory responses. Through this work, we gain a better understanding of the molecular interactions that occur at the macrophage-ameba interface that regulate host inflammatory responses.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luz Aracely Fernandez
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
4
|
Shigefuku R, Watanabe T, Kanno Y, Ikeda H, Nakano H, Hattori N, Matsunaga K, Matsumoto N, Kanno SI, Nosho K, Hachiya A, Iwatani Y, Matsumori T, Tsukikawa S, Makizumi R, Otsubo T, Yamamoto H, Itoh F. Fusobacterium nucleatum detected simultaneously in a pyogenic liver abscess and advanced sigmoid colon cancer. Anaerobe 2017; 48:144-146. [PMID: 28823592 DOI: 10.1016/j.anaerobe.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/06/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
Fusobacterium nucleatum is an invasive, adherent, and pro-inflammatory anaerobic bacterium involved in various infections and colorectal cancer. We report a case with pyogenic liver abscess, diagnosed with advanced sigmoid colon cancer, in whom F. nucleatum was simultaneously detected. In this patient, F. nucleatum was systematically analyzed using the molecular biological techniques of metagenome analysis, conventional PCR, and microbial fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Ryuta Shigefuku
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tsunamasa Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuki Kanno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroki Ikeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyasu Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Nobuhiro Hattori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kotaro Matsunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Nobuyuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shin-Ichi Kanno
- Department of Gastroenterology, Sapporo Medical University School of Medicine, Japan
| | - Katsuhiko Nosho
- Department of Gastroenterology, Sapporo Medical University School of Medicine, Japan
| | - Atsuko Hachiya
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan
| | - Tomoko Matsumori
- Division of Gastroenterological and General Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Satoshi Tsukikawa
- Division of Gastroenterological and General Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ryoji Makizumi
- Division of Gastroenterological and General Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takehito Otsubo
- Division of Gastroenterological and General Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
5
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
6
|
Entamoeba histolytica: Overexpression of the gal/galnac lectin, ehcp2 and ehcp5 genes in an in vivo model of amebiasis. Parasitol Int 2016; 65:665-667. [PMID: 27616150 DOI: 10.1016/j.parint.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/18/2016] [Accepted: 08/28/2016] [Indexed: 11/21/2022]
Abstract
The parasite Entamoeba histolytica causes intestinal amebiasis and amebic liver abscess as its main extraintestinal manifestation. To study the in vivo events related to inflammation and the interactions between hosts and parasites during amebiasis, we designed a novel model of host-parasite interactions using cellulose membrane dialysis bags containing E. histolytica trophozoites. A bag is placed into the hamster peritoneal cavity, as has been reported in previous studies of programmed cell death (PCD) in E. histolytica trophozoites. To determine if virulence factors such as cysteine proteinases (EhCP2 and EhCP5) and Gal/GalNAc lectin could be involved in the host-parasite interaction using this model, we examined the relative expression of the ehcp2 and ehcp5 genes and the carbohydrate recognition domain (crd) of Gal/GalNAc lectin using real-time quantitative PCR (qRT-PCR). All analyzed genes were over-expressed 0.5h after the initiation of the host-parasite interaction and were then progressively down-regulated. However, Gal/GalNAc lectin had the greatest increase in gene expression 1.5h after host-parasite interaction; Gal/GalNAc lectin had a 250-fold increase with respect to the axenically grown trophozoites, which over-express Gal/GalNAc lectin in in vivo models. These results support the important role of these molecules in the initiation of cell damage by E. histolytica.
Collapse
|
7
|
Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Endoplasmic reticulum-resident Rab8A GTPase is involved in phagocytosis in the protozoan parasite Entamoeba histolytica. Cell Microbiol 2016; 18:1358-73. [PMID: 26807810 PMCID: PMC5071775 DOI: 10.1111/cmi.12570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
Phagocytosis is indispensable for the pathogenesis of the intestinal protozoan parasite Entamoeba histolytica. Here, we showed that in E. histolytica Rab8A, which is generally involved in trafficking from the trans‐Golgi network to the plasma membrane in other organisms but was previously identified in phagosomes of the amoeba in the proteomic analysis, primarily resides in the endoplasmic reticulum (ER) and participates in phagocytosis. We demonstrated that down‐regulation of EhRab8A by small antisense RNA‐mediated transcriptional gene silencing remarkably reduced adherence and phagocytosis of erythrocytes, bacteria and carboxylated latex beads. Surface biotinylation followed by SDS‐PAGE analysis revealed that the surface expression of several proteins presumably involved in target recognition was reduced in the EhRab8A gene‐silenced strain. Further, overexpression of wild‐type EhRab8A augmented phagocytosis, whereas expression of the dominant‐negative form of EhRab8A resulted in reduced phagocytosis. These results indicated that EhRab8A regulates transport of surface receptor(s) for the prey from the ER to the plasma membrane. To our knowledge, this is the first report that the ER‐resident Rab GTPase is involved in phagocytosis through the regulation of trafficking of a surface receptor, supporting a premise of direct involvement of the ER in phagocytosis.
Collapse
Affiliation(s)
- Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
8
|
Pais-Morales J, Betanzos A, García-Rivera G, Chávez-Munguía B, Shibayama M, Orozco E. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica. PLoS One 2016; 11:e0146287. [PMID: 26731663 PMCID: PMC4701480 DOI: 10.1371/journal.pone.0146287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.
Collapse
Affiliation(s)
- Jonnatan Pais-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
- * E-mail:
| |
Collapse
|