1
|
Park JH, Lee JW, Choi H, Jung SK, Kim JS, Kim KW, Oh KB, Yang H, Byun SJ. Survival of Escherichia coli harboring nucleic acid-hydrolyzing 3D8 scFv during RNA virus infection. Regul Toxicol Pharmacol 2018; 94:286-292. [PMID: 29486271 PMCID: PMC7115797 DOI: 10.1016/j.yrtph.2018.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 11/24/2022]
Abstract
Previously, Escherichia coli harboring the codon-optimized 3D8scFv gene (E. coli 3D8scFv) was developed as a feed additive for use in preventing norovirus infection. Here, we evaluated whether the 3D8scFv gene affects the colonization of E coli when E. coli 3D8scFv passes through the mouse gastrointestinal tract. To determine the colonization ability of E. coli 3D8scFv, E. coli cells with or without the 3D8scFv gene were fed to mice. Total DNA was extracted from the animals’ stools, stomach, small intestine and colon. All samples were amplified using 3D8scFv gene-specific primer sets. E. coli 3D8scFv begins to be excreted 1 h after feeding and that all E. coli 3D8scFv cells were excreted between 12 and 24 h after the last feeding of the cells. The previously measured gastrointestinal transit time of the mice was between 8 h and 22 h. The results of this study therefore show that E. coli 3D8scFv cannot colonize the gastrointestinal tracts of mice. In addition, if the purified 3D8 scFv protein is used as a feed additive, any associated E. coli 3D8scFv bacteria will not colonize the gastrointestinal tracts of the livestock. Thus, this feed additive meets the safety assessment criteria for the commercial use of bacteria. It is evaluated whether E. coli 3D8scFv colonizes in the gastrointestinal tracts of mice. Orally ingested E. coli 3D8scFv is excreted from mice without colonization of the gastrointestinal tract. Purified 3D8 scFv is suitable for a feed additive according to the concept of substantial equivalence.
Collapse
Affiliation(s)
- Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do 28116, South Korea
| | - Jae-Woo Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do 28116, South Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Hoonsung Choi
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Jeom Sun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, South Korea.
| |
Collapse
|
2
|
Hoban A, Moloney R, Golubeva A, McVey Neufeld K, O’Sullivan O, Patterson E, Stanton C, Dinan T, Clarke G, Cryan J. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 2016; 339:463-477. [DOI: 10.1016/j.neuroscience.2016.10.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 10/02/2016] [Indexed: 12/22/2022]
|
3
|
Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M, Borregaard N, Joe B, Vijay-Kumar M. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat Commun 2015; 6:7113. [PMID: 25964185 DOI: 10.1038/ncomms8113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
During an inflammatory response in the gut, some commensal bacteria such as E. coli can thrive and contribute to disease. Here we demonstrate that enterobactin (Ent), a catecholate siderophore released by E. coli, is a potent inhibitor of myeloperoxidase (MPO), a bactericidal enzyme of the host. Glycosylated Ent (salmochelin) and non-catecholate siderophores (yersiniabactin and ferrichrome) fail to inhibit MPO activity. An E. coli mutant (ΔfepA) that overproduces Ent, but not an Ent-deficient double mutant (ΔaroB/ΔfepA), inhibits MPO activity and exhibits enhanced survival in inflamed guts. This survival advantage is counter-regulated by lipocalin 2, a siderophore-binding host protein, which rescues MPO from Ent-mediated inhibition. Spectral analysis reveals that Ent interferes with compound I [oxoiron, Fe(IV)=O] and reverts the enzyme back to its native ferric [Fe(III)] state. These findings define a fundamental mechanism by which E. coli surpasses the host innate immune responses during inflammatory gut diseases and gains a distinct survival advantage.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Beng San Yeoh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xia Xiao
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Manish Kumar
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael Bachman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-5602, USA
| | - Niels Borregaard
- Department of Hematology, The Granulocyte Research Laboratory, National University Hospital, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Matam Vijay-Kumar
- 1] Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Medicine, Pennsylvania State University Medical Center, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
4
|
Kupz A, Fischer A, Nies DH, Grass G, Göbel UB, Bereswill S, Heimesaat MM. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract. Eur J Microbiol Immunol (Bp) 2013; 3:229-35. [PMID: 24265943 DOI: 10.1556/eujmi.3.2013.3.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.
Collapse
|