1
|
Fan X, Qu PY, Luan KF, Sun CY, Ren HP, Sun XH, Lan J. A cleaved adhesin DNA vaccine targeting dendritic cell against Porphyromonas gingivalis-induced periodontal disease. Mol Oral Microbiol 2024; 39:433-445. [PMID: 38696249 DOI: 10.1111/omi.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Arg-gingipain A (RgpA) is the primary virulence factor of Porphyromonas gingivalis and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin-binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against P. gingivalis-induced periodontal disease. METHODS C57 mice were immunized prophylactically with pVAX1-CA, pVAX1-HA, pVAX1, and phosphate-buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before P. gingivalis-induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA-seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co-delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro-computed tomography. RESULTS After the immunization, both the pVAX1-CA and pVAX1-HA groups exhibited significantly elevated P. gingivalis-specific IgG and IgG1, as well as a reduction in bone loss around periodontitis-affected teeth, compared to the pVAX1 and PBS groups (p < 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) in DCs. Furthermore, the RNA-seq analysis revealed a significant increase in the chemokine (C-C motif) ligand 19 (p < 0.05). A notable elevation in the quantities of DCs co-labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon-gamma (IFN-γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19-CA immunization. This outcome effectively illustrated the preservation of peri-implant bone mass in rats afflicted with P. gingivalis-induced peri-implantitis (p < 0.05). CONCLUSIONS The co-administration of a CCL19-conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against P. gingivalis-induced periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Xin Fan
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Peng-Yu Qu
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Ke-Feng Luan
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Chen-Yu Sun
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Hui-Ping Ren
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xue-Hui Sun
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jing Lan
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
2
|
Kim B, Hwang J, Im S, Do H, Shim YS, Lee JH. First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis. Acta Crystallogr F Struct Biol Commun 2024; 80:252-262. [PMID: 39325582 PMCID: PMC11448926 DOI: 10.1107/s2053230x24008185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/28/2024] Open
Abstract
Porphyromonas gingivalis is a major pathogenic oral bacterium that is responsible for periodontal disease. It is linked to chronic periodontitis, gingivitis and aggressive periodontitis. P. gingivalis exerts its pathogenic effects through mechanisms such as immune evasion and tissue destruction, primarily by secreting various factors, including cysteine proteases such as gingipain K (Kgp), gingipain R (RgpA and RgpB) and PrtH (UniProtKB ID P46071). Virulence proteins comprise multiple domains, including the pro-peptide region, catalytic domain, K domain, R domain and DUF2436 domain. While there is a growing database of knowledge on virulence proteins and domains, there was no prior evidence or information regarding the structure and biological function of the well conserved DUF2436 domain. In this study, the DUF2436 domain of PrtH from P. gingivalis (PgDUF2436) was determined at 2.21 Å resolution, revealing a noncanonical β-jelly-roll sandwich topology with two antiparallel β-sheets and one short α-helix. Although the structure of PgDUF2436 was determined by the molecular-replacement method using an AlphaFold model structure as a template, there were significant differences in the positions of β1 between the AlphaFold model and the experimentally determined PgDUF2436 structure. The Basic Local Alignment Search Tool sequence-similarity search program showed no sequentially similar proteins in the Protein Data Bank. However, DaliLite search results using structure-based alignment revealed that the PgDUF2436 structure has structural similarity Z-scores of 5.9-5.4 with the C-terminal domain of AlgF, the D4 domain of cytolysin, IglE and the extracellular domain structure of PepT2. This study has elucidated the structure of the DUF2436 domain for the first time and a comparative analysis with similar structures has been performed.
Collapse
Affiliation(s)
- Bogeun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jisub Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sehyeok Im
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Hackwon Do
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Youn Soo Shim
- Department of Dental Hygiene, Sunmoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
3
|
Li Q, Ouyang X, Lin J. The impact of periodontitis on vascular endothelial dysfunction. Front Cell Infect Microbiol 2022; 12:998313. [PMID: 36118034 PMCID: PMC9480849 DOI: 10.3389/fcimb.2022.998313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontitis, an oral inflammatory disease, originates from periodontal microbiota dysbiosis which is associated with the dysregulation of host immunoinflammatory response. This chronic infection is not only harmful to oral health but is also a risk factor for the onset and progress of various vascular diseases, such as hypertension, atherosclerosis, and coronary arterial disease. Vascular endothelial dysfunction is the initial key pathological feature of vascular diseases. Clarifying the association between periodontitis and vascular endothelial dysfunction is undoubtedly a key breakthrough for understanding the potential relationship between periodontitis and vascular diseases. However, there is currently a lack of an updated review of their relationship. Therefore, we aim to focus on the implications of periodontitis in vascular endothelial dysfunction in this review.
Collapse
Affiliation(s)
- Qian Li
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| |
Collapse
|
4
|
Veith PD, Glew MD, Gorasia DG, Reynolds EC. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 2017; 106:35-53. [DOI: 10.1111/mmi.13752] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| |
Collapse
|
5
|
Ranaivoson FM, von Daake S, Comoletti D. Structural Insights into Reelin Function: Present and Future. Front Cell Neurosci 2016; 10:137. [PMID: 27303268 PMCID: PMC4882317 DOI: 10.3389/fncel.2016.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Reelin is a neuronal glycoprotein secreted by the Cajal-Retzius cells in marginal regions of the cerebral cortex and the hippocampus where it plays important roles in the control of neuronal migration and the formation of cellular layers during brain development. This 3461 residue-long protein is composed of a signal peptide, an F-spondin-like domain, eight Reelin repeats (RR1-8), and a positively charged sequence at the C-terminus. Biochemical data indicate that the central region of Reelin binds to the low-density lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), leading to the phosphorylation of the intracellular adaptor protein Dab1. After secretion, Reelin is rapidly degraded in three major fragments, but the functional significance of this degradation is poorly understood. Probably due to its large mass and the complexity of its architecture, the high-resolution, three-dimensional structure of Reelin has never been determined. However, the crystal structures of some of the RRs have been solved, providing important insights into their fold and the interaction with the ApoER2 receptor. This review discusses the current findings on the structure of Reelin and its binding to the ApoER2 and VLDLR receptors, and we discuss some areas where proteomics and structural biology can help understanding Reelin function in brain development and human health.
Collapse
Affiliation(s)
- Fanomezana M Ranaivoson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA
| | - Sventja von Daake
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA
| |
Collapse
|
6
|
Smalley JW, Olczak T. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment. Mol Oral Microbiol 2016; 32:1-23. [PMID: 26662717 DOI: 10.1111/omi.12149] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 01/14/2023]
Abstract
Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore.
Collapse
Affiliation(s)
- J W Smalley
- School of Dentistry, University of Liverpool, Liverpool, UK
| | - T Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
7
|
Berry IJ, Steele JR, Padula MP, Djordjevic SP. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2015; 16:257-72. [DOI: 10.1002/pmic.201500319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Iain J. Berry
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Joel R. Steele
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Matthew P. Padula
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Steven P. Djordjevic
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
8
|
Schmuch J, Beckert S, Brandt S, Löhr G, Hermann F, Schmidt TJ, Beikler T, Hensel A. Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(4β→8)-epicatechin-3-O-gallate (procyanidin-B2-Di-gallate). PLoS One 2015; 10:e0120130. [PMID: 25803708 PMCID: PMC4372542 DOI: 10.1371/journal.pone.0120130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/19/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The aerial parts of Rumex acetosa L. have been used in traditional European medicine for inflammatory diseases of the mouth epithelial tissue. The following study aimed to investigate the influence of a proanthocyanidin-enriched extract from R. acetosa extract against the adhesion of Porphyromonas gingivalis (P. gingivalis), a pathogen strongly involved in chronic and aggressive periodontitis. A further goal was to define the bioactive lead structures responsible for a potential antiadhesive activity and to characterize the underlying molecular mechanisms of the antiadhesive effects. METHODOLOGY An extract of R. acetosa (RA1) with a defined mixture of flavan-3-ols, oligomeric proanthocyanidins and flavonoids, was used. Its impact on P. gingivalis adhesion to KB cells was studied by flow cytometry, confocal laser scanning microscopy and in situ adhesion assay using murine buccal tissue. RA1 and its compounds 1 to 15 were further investigated for additional effects on gingipain activity, hemagglutination and gene expression by RT-PCR. PRINCIPAL FINDINGS RA1 (5 to 15 μg/mL) reduced P. gingivalis adhesion in a dose-dependent manner to about 90%. Galloylated proanthocyanidins were confirmed to be responsible for this antiadhesive effect with epicatechin-3-O-gallate-(4β,8)-epicatechin-3'-O-gallate (syn. procyanidin B2-di-gallate) being the lead compound. Ungalloylated flavan-3-ols and oligomeric proanthocyanidins were inactive. RA1 and the galloylated proanthocyanidins strongly interact with the bacterial virulence factor Arg-gingipain, while the corresponding Lys-gingipain was hardly influenced. RA1 inhibited also hemagglutination. In silico docking studies indicated that epicatechin-3-O-gallate-(4β,8)-epicatechin-3'-O-gallate interacts with the active side of Arg-gingipain and hemaglutinin from P. gingivalis; the galloylation of the molecule seems to be responsible for fixation of the ligand to the protein. In conclusion, the proanthocyanidin-enriched extract RA1 and its main active constituent procyanidin B2-di-gallate protect cells from P. gingivalis infection by inhibiting bacterial adhesion to the host cell. RA1 and procyanidin B2-di-gallate appear to be promising candidates for future cytoprotective preparations for oral mouth care products.
Collapse
Affiliation(s)
- Jana Schmuch
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Sabine Beckert
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Simone Brandt
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Gesine Löhr
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Fabian Hermann
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Thomas J. Schmidt
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Thomas Beikler
- Heinrich-Heine-University, Department of Operative Dentistry, Periodontics and Endodontics, Düsseldorf, Germany
| | - Andreas Hensel
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Münster, Germany
| |
Collapse
|
9
|
Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014; 2014:476068. [PMID: 24741603 PMCID: PMC3984870 DOI: 10.1155/2014/476068] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity.
Collapse
|