1
|
Virga J, Bognár L, Hortobágyi T, Csősz É, Kalló G, Zahuczki G, Steiner L, Hutóczki G, Reményi-Puskár J, Klekner A. The Expressional Pattern of Invasion-Related Extracellular Matrix Molecules in CNS Tumors. Cancer Invest 2018; 36:492-503. [PMID: 30501525 DOI: 10.1080/07357907.2018.1545855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim of the study: Astrocytomas are primary CNS malignancies which infiltrate the peritumoral tissue, even when they are low-grade. Schwannomas are also primary CNS tumors, however, they do not show peritumoral infiltration similarly to brain metastases which almost never invade the neighboring parts of brain. Extracellular matrix is altered in composition in various cancer types and is proposed to play an important role in the development of invasiveness of astrocytic tumors. This study aims to identify differences in the ECM composition of CNS tumors with different invasiveness.Materials and methods: The mRNA and protein levels of ECM components were measured by QRT-PCR and mass-spectrometry, respectively, in grade II astrocytoma, NSCLC brain metastasis, schwannomas, and non-tumor brain control samples. Expressional data was analyzed statistically with ANOVA and nearest neighbor search.Results: There is a significant difference in the expressional pattern of invasion-related ECM components among various CNS tumors, especially among those of different embryonic origin. Non-invasive tumors show only slight differences in the expressional pattern of ECM molecules. Tumor samples can be separated based on their expressional pattern using statistical classifiers, therefore the ECM composition seems to be typical of various cancer types.Conclusions: Differences in the expressional pattern of the ECM could be responsible for the different invasiveness of various CNS tumors.
Collapse
Affiliation(s)
- József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Department of Neuropathology, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczki
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - László Steiner
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | | | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Virga J, Szivos L, Hortobágyi T, Chalsaraei MK, Zahuczky G, Steiner L, Tóth J, Reményi-Puskár J, Bognár L, Klekner A. Extracellular matrix differences in glioblastoma patients with different prognoses. Oncol Lett 2018; 17:797-806. [PMID: 30655832 PMCID: PMC6313004 DOI: 10.3892/ol.2018.9649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is the most common malignant central nervous system tumor. Patient outcome remains poor despite the development of therapy and increased understanding of the disease in the past decades. Glioma cells invade the peritumoral brain, which results in inevitable tumor recurrence. Previous studies have demonstrated that the extracellular matrix (ECM) is altered in gliomas and serves a major role in glioma invasion. The present study focuses on differences in the ECM composition of tumors in patients with poor and improved prognosis. The mRNA and protein expression of 16 invasion-associated ECM molecules was determined using reverse trascription-quantitiative polymerase chain reaction and immunohistochemistry, respectively. Clinical factors of patients with different prognoses was also analyzed. It was determined that age and postoperative Karnofsky performance score were associated with patient survival. Furthermore, Fms-related tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR3), murine double minute 2 (MDM2) and matrix metallopeptidase 2 (MMP2) mRNA levels were significantly different between the two prognostic groups. Additionally, brevican, cluster of differentiation 44, hyaluronan mediated motility receptor, integrin-αV and -β1, and MDM2 protein expression were indicated to be significantly different in immunohistochemistry slides. Using the expression profile, including the invasion spectrum of the samples, it was possible to identify the prognostic group of the sample with high efficacy, particularly in cases with poor prognosis. In conclusion, it was determined that ECM components exhibit different expression levels in tumors with different prognoses and thus the invasion spectrum can be used as a prognostic factor in glioblastoma.
Collapse
Affiliation(s)
- József Virga
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Szivos
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neuropathology, Institute of Pathology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mahan Kouhsari Chalsaraei
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neuropathology, Institute of Pathology, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | - Judit Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Reményi-Puskár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Almos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Hutóczki G, Bognár L, Tóth J, Scholtz B, Zahuczky G, Hanzély Z, Csősz É, Reményi-Puskár J, Kalló G, Hortobágyi T, Klekner A. Effect of Concomitant Radiochemotherapy on Invasion Potential of Glioblastoma. Pathol Oncol Res 2015; 22:155-60. [PMID: 26450124 DOI: 10.1007/s12253-015-9989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/29/2015] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with inevitable recurrence after oncotherapy. The insufficient effect of "gold standard" temozolomide-based concomitant radiochemotherapy may be due to the inability to prevent tumor cell invasion. Peritumoral infiltration depends mainly on the interaction between extracellular matrix (ECM) components and cell membrane receptors. Changes in invasive behaviour after oncotherapy can be evaluated at the molecular level by determining the RNA expression and protein levels of the invasion-related ECM components. The expression of nineteen ECM molecules was determined at both RNA and protein levels in thirty-one GBM samples. Fifteen GBM samples originated from the first surgical procedure on patients before oncotherapy, and sixteen GBM samples were collected at the second surgery due to local recurrence after concomitant chemoirradiation. RNA expressions were measured with qRT-PCR, and protein levels were determined by quantitative analysis of Western blots. Only MMP-9 RNA transcript level was reduced (p < 0.05) whereas at protein level, eight molecules showed changes concordant with RNA expression with significant decrease in brevican only. The results suggest that concomitant radiochemotherapy does not have sufficient impact on the expression of invasion-related ECM components of glioblastoma, oncotherapy does not significantly affect its invasive behavior. To avoid the spread of tumors into the brain parenchyma, supplementation of antiproliferative treatment with anti-invasive agents may be worth consideration in oncotherapy for glioblastoma.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| | - Judit Tóth
- Department of Oncology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Beáta Scholtz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gábor Zahuczky
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,UD-Genomed Medical Genomic Technologies Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Zoltán Hanzély
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, 1145, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Judit Reményi-Puskár
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| |
Collapse
|
4
|
Expression pattern of invasion-related molecules in the peritumoral brain. Clin Neurol Neurosurg 2015; 139:138-43. [PMID: 26451999 DOI: 10.1016/j.clineuro.2015.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The effectiveness of therapy of intracerebral neoplasms is mainly influenced by the invasive behaviour of the tumour. The peritumoral invasion depends on the interaction between the tumour cells and the extracellular matrix (ECM) of the surrounding brain. The invading tumour cells induce change in the activity of proteases, synthases and expression of ECM-components. These alterations in the peritumoral ECM are in connection to the highly different invasiveness of gliomas and metastatic brain tumours. To understand the fairly modified invasive potential of anaplastic intracerebral tumours of different origin, the effect of tumour on the peritumoral ECM and alterations of invasion related ECM components in the peritumoral brain were evaluated. METHODS For this reason the mRNA expression of 19 invasion-related molecules by quantitative reverse transcriptase polymerase chain reaction was determined in normal brain tissue (Norm), in the peritumoral brain tissue of glioblastoma (peri-GBM) and of intracerebral adenocarcinoma metastasis (peri-Met). To evaluate the translational expression of the investigated molecules protein levels were determined by targeted proteomic methods. RESULTS Establishing the invasion pattern of the investigated tissue samples 8 molecules showed concordant difference at mRNA and protein levels in the peri-GBM and peri-Met, 11 molecules in the peri-Met and normal brain and 12 in the peri-GBM and normal brain comparison. CONCLUSION Our results bring some ECM molecules into focus that probably play key role in arresting tumour cell invasion around the metastatic tumour, and also in the lack of impeding tumour cell migration in case of glioblastoma.
Collapse
|
5
|
Qin Y, Fu M, Takahashi M, Iwanami A, Kuga D, Rao RG, Sudhakar D, Huang T, Kiyohara M, Torres K, Dillard C, Inagaki A, Kasahara N, Goodglick L, Braun J, Mischel PS, Gordon LK, Wadehra M. Epithelial membrane protein-2 (EMP2) activates Src protein and is a novel therapeutic target for glioblastoma. J Biol Chem 2014; 289:13974-85. [PMID: 24644285 DOI: 10.1074/jbc.m113.543728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite recent advances in molecular classification, surgery, radiotherapy, and targeted therapies, the clinical outcome of patients with malignant brain tumors remains extremely poor. In this study, we have identified the tetraspan protein epithelial membrane protein-2 (EMP2) as a potential target for glioblastoma (GBM) killing. EMP2 had low or undetectable expression in normal brain but was highly expressed in GBM as 95% of patients showed some expression of the protein. In GBM cells, EMP2 enhanced tumor growth in vivo in part by up-regulating αvβ3 integrin surface expression, activating focal adhesion kinase and Src kinases, and promoting cell migration and invasion. Consistent with these findings, EMP2 expression significantly correlated with activated Src kinase in patient samples and promoted tumor cell invasion using intracranial mouse models. As a proof of principle to determine whether EMP2 could serve as a target for therapy, cells were treated using specific anti-EMP2 antibody reagents. These reagents were effective in killing GBM cells in vitro and in reducing tumor load in subcutaneous mouse models. These results support the role of EMP2 in the pathogenesis of GBM and suggest that anti-EMP2 treatment may be a novel therapeutic treatment.
Collapse
Affiliation(s)
- Yu Qin
- From the Departments of Ophthalmology and
| | | | - Masamichi Takahashi
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | | | | | | | | | | | | | | | | | - Akihito Inagaki
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | - Noriyuki Kasahara
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | - Lee Goodglick
- Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and
| | - Jonathan Braun
- Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and
| | - Paul S Mischel
- the Ludwig Institute for Cancer Research, Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | | | - Madhuri Wadehra
- Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and
| |
Collapse
|
6
|
Varga I, Hutóczki G, Szemcsák CD, Zahuczky G, Tóth J, Adamecz Z, Kenyeres A, Bognár L, Hanzély Z, Klekner A. Brevican, Neurocan, Tenascin-C and Versican are Mainly Responsible for the Invasiveness of Low-Grade Astrocytoma. Pathol Oncol Res 2011; 18:413-20. [DOI: 10.1007/s12253-011-9461-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/09/2011] [Indexed: 11/29/2022]
|