Yoo BC, Kim KH, Woo SM, Myung JK. Clinical multi-omics strategies for the effective cancer management.
J Proteomics 2017;
188:97-106. [PMID:
28821459 DOI:
10.1016/j.jprot.2017.08.010]
[Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a global health issue as a multi-factorial complex disease, and early detection and novel therapeutic strategies are required for more effective cancer management. With the development of systemic analytical -omics strategies, the therapeutic approach and study of the molecular mechanisms of carcinogenesis and cancer progression have moved from hypothesis-driven targeted investigations to data-driven untargeted investigations focusing on the integrated diagnosis, treatment, and prevention of cancer in individual patients. Predictive, preventive, and personalized medicine (PPPM) is a promising new approach to reduce the burden of cancer and facilitate more accurate prognosis, diagnosis, as well as effective treatment. Here we review the fundamentals of, and new developments in, -omics technologies, together with the key role of a variety of practical -omics strategies in PPPM for cancer treatment and diagnosis.
BIOLOGICAL SIGNIFICANCE
In this review, a comprehensive and critical overview of the systematic strategy for predictive, preventive, and personalized medicine (PPPM) for cancer disease was described in a view of cancer prognostic prediction, diagnostics, and prevention as well as cancer therapy and drug responses. We have discussed multi-dimensional data obtained from various resources and integration of multisciplinary -omics strategies with computational method which could contribute the more effective PPPM for cancer. This review has provided the novel insights of the current applications of each and combined -omics technologies, which showed their powerful potential for the establishment of PPPM for cancer.
Collapse