1
|
Song MK, Lee HS, Ryu JC. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology 2015; 334:111-21. [DOI: 10.1016/j.tox.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
|
2
|
Song MK, Lee HS, Choi HS, Shin CY, Kim YJ, Park YK, Ryu JC. Octanal-induced inflammatory responses in cells relevant for lung toxicity. Hum Exp Toxicol 2013; 33:710-21. [DOI: 10.1177/0960327113506722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhalation is an important route of aldehyde exposure, and lung is one of the main targets of aldehyde toxicity. Octanal is distributed ubiquitously in the environment and is a component of indoor air pollutants. We investigated whether octanal exposure enhances the inflammatory response in the human respiratory system by increasing the expression and release of cytokines and chemokines. The effect of octanal in transcriptomic modulation was assessed in the human alveolar epithelial cell line A549 using oligonucleotide arrays. We identified a set of genes differentially expressed upon octanal exposure that may be useful for monitoring octanal pulmonary toxicity. These genes were classified according to the Gene Ontology functional category and Kyoto Encyclopedia of Genes and Genomes analysis to explore the biological processes related to octanal-induced pulmonary toxicity. The results show that octanal affects the expression of several chemokines and inflammatory cytokines and increases the levels of interleukin 6 (IL-6) and IL-8 released. In conclusion, octanal exposure modulates the expression of cytokines and chemokines important in the development of lung injury and disease. This suggests that inflammation contributes to octanal-induced lung damage and that the inflammatory genes expressed should be studied in detail, thereby laying the groundwork for future biomonitoring studies.
Collapse
Affiliation(s)
- M-K Song
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, Korea
| | - H-S Lee
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - H-S Choi
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - C-Y Shin
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - Y-J Kim
- Department of Marine Sciences, Incheon National University, Yeonsu-gu, Incheon, Korea
| | - Y-K Park
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, Korea
| | - J-C Ryu
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| |
Collapse
|