1
|
Pontarp M, Lundberg P, Ripa J. The succession of ecological divergence and reproductive isolation in adaptive radiations. J Theor Biol 2024; 587:111819. [PMID: 38589008 DOI: 10.1016/j.jtbi.2024.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Adaptive radiation is a major source of biodiversity but the way in which known components of ecological opportunity, ecological differentiation, and reproductive isolation underpin such biodiversity patterns remains elusive. Much is known about the evolution of ecological differentiation and reproductive isolation during single speciation events, but exactly how those processes scale up to complete adaptive radiations is less understood. Do we expect complete reproductive barriers between newly formed species before the ecological differentiation continues, or does proper species formation occur much later, long after the ecological diversification? Our goal is to improve our mechanistic understanding of adaptive radiations by analyzing an individual-based model that includes a suite of mechanisms that are known to contribute to biodiversity. The model includes variable biogeographic settings, ecological opportunities, and types of mate choice, which makes several different scenarios of an adaptive radiation possible. We find that evolving clades tend to exploit ecological opportunities early whereas reproductive barriers evolve later, demonstrating a decoupling of ecological differentiation and species formation. In many cases, we also find a long-term trend where assortative mating associated with ecological traits is replaced by sexual selection of neutral display traits as the primary mechanism for reproductive isolation. Our results propose that reticulate phylogenies are likely common and stem from initially low reproductive barriers, rather than the previously suggested idea of repeated hybridization events between well-separated species.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | - Per Lundberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Jörgen Ripa
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
2
|
Aubier TG, Bürger R, Servedio MR. The effectiveness of pseudomagic traits in promoting premating isolation. Proc Biol Sci 2023; 290:20222108. [PMID: 36883275 PMCID: PMC9993058 DOI: 10.1098/rspb.2022.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Upon the secondary contact of populations, speciation with gene flow is greatly facilitated when the same pleiotropic loci are both subject to divergent ecological selection and induce non-random mating, leading to loci with this fortuitous combination of functions being referred to as 'magic trait' loci. We use a population genetics model to examine whether 'pseudomagic trait' complexes, composed of physically linked loci fulfilling these two functions, are as efficient in promoting premating isolation as magic traits. We specifically measure the evolution of choosiness, which controls the strength of assortative mating. We show that, surprisingly, pseudomagic trait complexes, and to a lesser extent also physically unlinked loci, can lead to the evolution of considerably stronger assortative mating preferences than do magic traits, provided polymorphism at the involved loci is maintained. This is because assortative mating preferences are generally favoured when there is a risk of producing maladapted recombinants, as occurs with non-magic trait complexes but not with magic traits (since pleiotropy precludes recombination). Contrary to current belief, magic traits may not be the most effective genetic architecture for promoting strong premating isolation. Therefore, distinguishing between magic traits and pseudomagic trait complexes is important when inferring their role in premating isolation. This calls for further fine-scale genomic research on speciation genes.
Collapse
Affiliation(s)
- Thomas G. Aubier
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | - Reinhard Bürger
- Department of Mathematics, University of Vienna, 1090 Vienna, Austria
| | - Maria R. Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Martin CH, Gould KJ. Surprising spatiotemporal stability of a multi-peak fitness landscape revealed by independent field experiments measuring hybrid fitness. Evol Lett 2020; 4:530-544. [PMID: 33312688 PMCID: PMC7719547 DOI: 10.1002/evl3.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of both environment and phenotype at the same time are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown. Here, we experimentally tested the effect of competitor frequency on the complex fitness landscape driving adaptive radiation of a generalist and two trophic specialist pupfishes, a scale-eater and molluscivore, endemic to hypersaline lakes on San Salvador Island (SSI), Bahamas. We manipulated phenotypes, by generating 3407 F4/F5 lab-reared hybrids, and competitive environment, by altering the frequency of rare transgressive hybrids between field enclosures in two independent lake populations. We then tracked hybrid survival and growth rates across these four field enclosures for 3-11 months. In contrast to competitive speciation theory, we found no evidence that the frequency of hybrid phenotypes affected their survival. Instead, we observed a strikingly similar fitness landscape to a previous independent field experiment, each supporting multiple fitness peaks for generalist and molluscivore phenotypes and a large fitness valley isolating the divergent scale-eater phenotype. These features of the fitness landscape were stable across manipulated competitive environments, multivariate trait axes, and spatiotemporal heterogeneity. We suggest that absolute performance constraints and divergent gene regulatory networks shape macroevolutionary (interspecific) fitness landscapes in addition to microevolutionary (intraspecific) competitive dynamics. This interplay between organism and environment underlies static and dynamic features of the adaptive landscape.
Collapse
Affiliation(s)
- Christopher H. Martin
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia94720
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia94720
| | - Katelyn J. Gould
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27515
| |
Collapse
|
4
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
5
|
Servedio MR, Hermisson J. The evolution of partial reproductive isolation as an adaptive optimum. Evolution 2019; 74:4-14. [DOI: 10.1111/evo.13880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Maria R. Servedio
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | - Joachim Hermisson
- Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz Laboratories University of Vienna Vienna Austria
| |
Collapse
|
6
|
Aubier TG, Kokko H, Joron M. Coevolution of male and female mate choice can destabilize reproductive isolation. Nat Commun 2019; 10:5122. [PMID: 31719522 PMCID: PMC6851176 DOI: 10.1038/s41467-019-12860-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2019] [Indexed: 11/09/2022] Open
Abstract
Sexual interactions play an important role in the evolution of reproductive isolation, with important consequences for speciation. Theoretical studies have focused on the evolution of mate preferences in each sex separately. However, mounting empirical evidence suggests that premating isolation often involves mutual mate choice. Here, using a population genetic model, we investigate how female and male mate choice coevolve under a phenotype matching rule and how this affects reproductive isolation. We show that the evolution of female preferences increases the mating success of males with reciprocal preferences, favouring mutual mate choice. However, the evolution of male preferences weakens indirect selection on female preferences and, with weak genetic drift, the coevolution of female and male mate choice leads to periodic episodes of random mating with increased hybridization (deterministic 'preference cycling' triggered by stochasticity). Thus, counterintuitively, the process of establishing premating isolation proves rather fragile if both male and female mate choice contribute to assortative mating.
Collapse
Affiliation(s)
- Thomas G Aubier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE - UMR 5175 - CNRS, Université de Montpellier, EPHE, Université Paul Valéry, 1919 route de Mende, F-34293, Montpellier 5, France.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE - UMR 5175 - CNRS, Université de Montpellier, EPHE, Université Paul Valéry, 1919 route de Mende, F-34293, Montpellier 5, France.
| |
Collapse
|
7
|
Richards EJ, Servedio MR, Martin CH. Searching for Sympatric Speciation in the Genomic Era. Bioessays 2019; 41:e1900047. [PMID: 31245871 PMCID: PMC8175013 DOI: 10.1002/bies.201900047] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Indexed: 12/25/2022]
Abstract
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Maria R. Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
8
|
Mazzucco R, Doebeli M, Dieckmann U. The influence of habitat boundaries on evolutionary branching along environmental gradients. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Smadi C, Leman H, Llaurens V. Looking for the right mate in diploid species: How does genetic dominance affect the spatial differentiation of a sexual trait? J Theor Biol 2018; 447:154-170. [PMID: 29577932 DOI: 10.1016/j.jtbi.2018.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022]
Abstract
Divergence between populations for a given trait can be driven by sexual selection, interacting with migration behaviour. Mating preference for different phenotypes may lead to specific migration behaviour, with departures from populations where the preferred trait is rare. Such preferences can then trigger the emergence and persistence of differentiated populations, even without any local adaptation. However the genetic architecture underlying the trait targeted by mating preference may have a profound impact on population divergence. In particular, dominance between alleles encoding for divergent phenotypes can interfere with the differentiation process. Using a diploid model of a trait determining both mating success and migration rate, we explored differentiation between two connected populations, assuming either co-dominance or strict dominance between alleles. The model assumes that individuals prefer mating with partners displaying the same phenotype and therefore tend to move to the other population when their own phenotype is rare. We show that the emergence of differentiated populations in this diploid moded is limited as compared to results obtained with the same model assuming haploidy. When assuming co-dominance, differentiation arises only when migration is limited compared to the strength of the preference. Such differentiation is less dependent on migration when assuming strict dominance between haplotypes. Dominant alleles frequently invade populations because their phenotype is more frequently expressed, resulting in higher local mating success and a rapid decrease in migration. However, depending on the initial distribution of alleles, this advantage associated with dominance (i.e. Haldane's sieve) may lead to fixation of the dominant allele throughout both populations. Depending on the initial distribution of heterozygotes in the two populations, persistence of polymorphisms within populations can also occur because heterozygotes displaying the predominant phenotype benefit from high mating success. Altogether, our results highlight that heterozygotes' behaviour has a strong impact on population differentiation and highlight the need for diploid models of differentiation and speciation driven by sexual selection.
Collapse
Affiliation(s)
- Charline Smadi
- IRSTEA UR LISC, Laboratoire d'ingénierie pour les Systèmes Complexes, 9 avenue Blaise-Pascal CS 20085, Aubière 63178, France; Complex Systems Institute of Paris Île-de-France, 113 rue Nationale, 75013, Paris, France
| | - Hélène Leman
- CIMAT, De Jalisco S-N, Valenciana, Guanajuato, Gto. 36240, Mexico
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité, CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
10
|
|
11
|
Servedio MR, Bürger R. The Effects on Parapatric Divergence of Linkage between Preference and Trait Loci versus Pleiotropy. Genes (Basel) 2018; 9:E217. [PMID: 29673216 PMCID: PMC5924559 DOI: 10.3390/genes9040217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
Attempts to uncover the genetic basis of female mating preferences and male signals involved in reproductive isolation have discovered intriguing cases in which loci contributing to these traits co-localize in their chromosomal positions. Such discoveries raise the question of whether alleles at certain loci contribute pleiotropically to male and female components of premating reproductive isolation, versus whether these loci are merely tightly linked. Here we use population genetic models to assess the degree to which these alternatives affect both short term and equilibrium patterns of trait (signal) and preference divergence. We take advantage of the fact that in the case of secondary contact between populations exchanging migrants, patterns of divergence across the range of preference strengths differ markedly when preferences and traits are controlled by the same locus (the case of phenotype matching) versus when they are on separate chromosomes. We find that tight linkage between preference and trait loci can mimic the pleiotropic pattern for many generations (roughly the reciprocal of the recombination rate), but that any recombination ultimately results in equilibrium patterns of divergence far more similar to those found when preferences and traits are on separate chromosomes. In general, our finding that pleiotropy results in quite different long-term patterns from tight linkage highlights the importance of distinguishing between these possibilities in empirical systems.
Collapse
Affiliation(s)
- Maria R Servedio
- Department of Biology, University of North Carolina, CB#3280, Coker Hall, Chapel Hill, NC 27599, USA.
| | - Reinhard Bürger
- Department of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Whitney JL, Bowen BW, Karl SA. Flickers of speciation: Sympatric colour morphs of the arc-eye hawkfish, Paracirrhites arcatus, reveal key elements of divergence with gene flow. Mol Ecol 2018; 27:1479-1493. [PMID: 29420860 DOI: 10.1111/mec.14527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
One of the primary challenges of evolutionary research is to identify ecological factors that favour reproductive isolation. Therefore, studying partially isolated taxa has the potential to provide novel insight into the mechanisms of evolutionary divergence. Our study utilizes an adaptive colour polymorphism in the arc-eye hawkfish (Paracirrhites arcatus) to explore the evolution of reproductive barriers in the absence of geographic isolation. Dark and light morphs are ecologically partitioned into basaltic and coral microhabitats a few metres apart. To test whether ecological barriers have reduced gene flow among dark and light phenotypes, we evaluated genetic variation at 30 microsatellite loci and a nuclear exon (Mc1r) associated with melanistic coloration. We report low, but significant microsatellite differentiation among colour morphs and stronger divergence in the coding region of Mc1r indicating signatures of selection. Critically, we observed greater genetic divergence between colour morphs on the same reefs than that between the same morphs in different geographic locations. We hypothesize that adaptation to the contrasting microhabitats is overriding gene flow and is responsible for the partial reproductive isolation observed between sympatric colour morphs. Combined with complementary studies of hawkfish ecology and behaviour, these genetic results indicate an ecological barrier to gene flow initiated by habitat selection and enhanced by assortative mating. Hence, the arc-eye hawkfish fulfil theoretical expectations for the earliest phase of speciation with gene flow.
Collapse
Affiliation(s)
- Jonathan L Whitney
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Stephen A Karl
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
13
|
Krohmaly KI, Martin ZW, Lattanzio MS. Male mate choice and the potential for complex mating dynamics in the tree lizard (Urosaurus ornatus). Ethology 2018. [DOI: 10.1111/eth.12726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kylie I. Krohmaly
- Department of Organismal and Environmental Biology; Christopher Newport University; Newport News VA USA
| | - Zachary W. Martin
- Department of Organismal and Environmental Biology; Christopher Newport University; Newport News VA USA
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental Biology; Christopher Newport University; Newport News VA USA
| |
Collapse
|
14
|
Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL, Hauber ME, Scordato EC, Symes LB, Balakrishnan CN, Zonana DM, van Doorn GS. Mechanisms of Assortative Mating in Speciation with Gene Flow: Connecting Theory and Empirical Research. Am Nat 2018; 191:1-20. [DOI: 10.1086/694889] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Servedio MR, Boughman JW. The Role of Sexual Selection in Local Adaptation and Speciation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022905] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection plays several intricate and complex roles in the related processes of local adaptation and speciation. In some cases sexual selection can promote these processes, but in others it can be inhibitory. We present theoretical and empirical evidence supporting these dual effects of sexual selection during local adaptation, allopatric speciation, and speciation with gene flow. Much of the empirical evidence for sexual selection promoting speciation is suggestive rather than conclusive; we present what would constitute strong evidence for sexual selection driving speciation. We conclude that although there is ample evidence that sexual selection contributes to the speciation process, it is very likely to do so only in concert with natural selection.
Collapse
Affiliation(s)
- Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
16
|
Cotto O, Servedio MR. The Roles of Sexual and Viability Selection in the Evolution of Incomplete Reproductive Isolation: From Allopatry to Sympatry. Am Nat 2017; 190:680-693. [DOI: 10.1086/693855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Coron C, Costa M, Leman H, Smadi C. A stochastic model for speciation by mating preferences. J Math Biol 2017; 76:1421-1463. [DOI: 10.1007/s00285-017-1175-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 07/27/2017] [Indexed: 11/24/2022]
|
18
|
Sachdeva H, Barton NH. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution 2017; 71:1478-1493. [PMID: 28419447 DOI: 10.1111/evo.13252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/04/2017] [Indexed: 11/30/2022]
Abstract
Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations.
Collapse
Affiliation(s)
- Himani Sachdeva
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg A-3400, Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg A-3400, Austria
| |
Collapse
|
19
|
Kautt AF, Machado-Schiaffino G, Torres-Dowdall J, Meyer A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol Evol 2016; 6:5342-57. [PMID: 27551387 PMCID: PMC4984508 DOI: 10.1002/ece3.2287] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split‐brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD‐seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | | | - Julian Torres-Dowdall
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
20
|
Fortelius M, Geritz S, Gyllenberg M, Raia P, Toivonen J. Modeling the Population-Level Processes of Biodiversity Gain and Loss at Geological Timescales. Am Nat 2015; 186:742-54. [PMID: 26655981 DOI: 10.1086/683660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The path of species diversification is commonly observed by inspecting the fossil record. Yet, how species diversity changes at geological timescales relate to lower-level processes remains poorly understood. Here we use mathematical models of spatially structured populations to show that natural selection and gradual environmental change give rise to discontinuous phenotype changes that can be connected to speciation and extinction at the macroevolutionary level. In our model, new phenotypes arise in the middle of the environmental gradient, while newly appearing environments are filled by existing phenotypes shifting their adaptive optima. Slow environmental change leads to loss of phenotypes in the middle of the extant environmental range, whereas fast change causes extinction at one extreme of the environmental range. We compared our model predictions against a well-known yet partially unexplained pattern of intense hoofed mammal diversification associated with grassland expansion during the Late Miocene. We additionally used the model outcomes to cast new insight into Cope's law of the unspecialized. Our general finding is that the rate of environmental change determines where generation and loss of diversity occur in the phenotypic and physical spaces.
Collapse
Affiliation(s)
- Mikael Fortelius
- Department of Geosciences and Geography, University of Helsinki, Helsinki FI-00014, Finland
| | | | | | | | | |
Collapse
|
21
|
Servedio MR, Bürger R. The effects of sexual selection on trait divergence in a peripheral population with gene flow. Evolution 2015; 69:2648-61. [DOI: 10.1111/evo.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maria R. Servedio
- Department of Biology; University of North Carolina; Chapel Hill North Carolina 27599
| | - Reinhard Bürger
- Department of Mathematics; University of Vienna; Oskar-Morgenstern-Platz 1 1090 Vienna Austria
| |
Collapse
|
22
|
Servedio MR. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol Appl 2015; 9:91-102. [PMID: 27087841 PMCID: PMC4780376 DOI: 10.1111/eva.12296] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.
Collapse
Affiliation(s)
- Maria R Servedio
- Department of Biology University of North Carolina Chapel Hill NC USA
| |
Collapse
|
23
|
Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 2015; 69:1406-1422. [PMID: 25929355 DOI: 10.1111/evo.12674] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph S Cutler
- Department of Conservation Biology, University of California, Santa Cruz, California
| | - John P Friel
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama
| | | | - Graham Coop
- Center for Population Biology and Department of Evolution & Ecology, University of California, Davis, California
| | - Peter C Wainwright
- Center for Population Biology and Department of Evolution & Ecology, University of California, Davis, California
| |
Collapse
|
24
|
Rudnicki R, Zwoleński P. Model of phenotypic evolution in hermaphroditic populations. J Math Biol 2015; 70:1295-321. [PMID: 24832543 PMCID: PMC4365287 DOI: 10.1007/s00285-014-0798-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/28/2014] [Indexed: 11/29/2022]
Abstract
We consider an individual based model of phenotypic evolution in hermaphroditic populations which includes random and assortative mating of individuals. By increasing the number of individuals to infinity we obtain a nonlinear transport equation, which describes the evolution of phenotypic distribution. The main result of the paper is a theorem on asymptotic stability of trait distribution. This theorem is applied to models with the offspring trait distribution given by additive and multiplicative random perturbations of the parental mean trait.
Collapse
Affiliation(s)
- Ryszard Rudnicki
- Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland
| | - Paweł Zwoleński
- Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland
| |
Collapse
|
25
|
Priklopil T, Kisdi E, Gyllenberg M. Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution 2015; 69:1015-26. [DOI: 10.1111/evo.12618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/26/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Tadeas Priklopil
- Department of Mathematics and Statistics; University of Helsinki; P.O. Box 68 (Gustaf Hallstromin katu 2b) FI-00014 Helsinki Finland
- Institute of Science and Technology Austria; Am Campus 1 A-3400 Klosterneuburg Austria
| | - Eva Kisdi
- Department of Mathematics and Statistics; University of Helsinki; P.O. Box 68 (Gustaf Hallstromin katu 2b) FI-00014 Helsinki Finland
| | - Mats Gyllenberg
- Department of Mathematics and Statistics; University of Helsinki; P.O. Box 68 (Gustaf Hallstromin katu 2b) FI-00014 Helsinki Finland
| |
Collapse
|
26
|
The counterintuitive role of sexual selection in species maintenance and speciation. Proc Natl Acad Sci U S A 2014; 111:8113-8. [PMID: 24821767 DOI: 10.1073/pnas.1316484111] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pronounced and elaborate displays that often differ between closely related animal species have led to the common assumption that sexual selection is important in speciation, especially in geographically separated populations. We use population genetic models to examine the ability of Fisherian sexual selection to contribute to lasting species differentiation by isolating its effect after the onset of gene flow between allopatric populations. We show that when sexually selected traits are under ecologically divergent selection, the situation most favorable to speciation, mating preferences tend to introgress faster than trait alleles, causing sexual selection to counter the effects of local adaptation. As a consequence, the net amount of trait divergence often drops with stronger Fisherian sexual selection. Furthermore, alleles for progressively weaker preferences spread in this context until sexual selection is removed. The effects of pure Fisherian sexual selection on species maintenance are thus much more inhibitory than previously assumed.
Collapse
|
27
|
Rettelbach A, Kopp M, Dieckmann U, Hermisson J. Three modes of adaptive speciation in spatially structured populations. Am Nat 2013; 182:E215-34. [PMID: 24231546 DOI: 10.1086/673488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Adaptive speciation with gene flow via the evolution of assortative mating has classically been studied in one of two different scenarios. First, speciation can occur if frequency-dependent competition in sympatry induces disruptive selection, leading to indirect selection for mating with similar phenotypes. Second, if a subpopulation is locally adapted to a specific environment, then there is indirect selection against hybridizing with maladapted immigrants. While both of these mechanisms have been modeled many times, the literature lacks models that allow direct comparisons between them. Here we incorporate both frequency-dependent competition and local adaptation into a single model and investigate whether and how they interact in driving speciation. We report two main results. First, we show that individually, the two mechanisms operate under separate conditions, hardly influencing each other when one of them alone is sufficient to drive speciation. Second, we also find that the two mechanisms can operate together, leading to a third speciation mode in which speciation is initiated by selection against maladapted migrants but completed by within-deme competition in a distinct second phase. While this third mode bears some similarity to classical reinforcement, it is considerably faster, and both newly formed species go on to coexist in sympatry.
Collapse
Affiliation(s)
- Agnes Rettelbach
- Department of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Vienna, Austria; and Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Martin CH. STRONG ASSORTATIVE MATING BY DIET, COLOR, SIZE, AND MORPHOLOGY BUT LIMITED PROGRESS TOWARD SYMPATRIC SPECIATION IN A CLASSIC EXAMPLE: CAMEROON CRATER LAKE CICHLIDS. Evolution 2013; 67:2114-23. [DOI: 10.1111/evo.12090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher H. Martin
- Department of Evolution and Ecology and Center for Population Biology; University of California; Davis California 95616
| |
Collapse
|
29
|
Servedio MR, Hermisson J, van Doorn GS. Hybridization may rarely promote speciation. J Evol Biol 2013; 26:282-5. [DOI: 10.1111/jeb.12038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/28/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
Affiliation(s)
- M. R. Servedio
- Department of Biology; University of North Carolina; Chapel Hill NC USA
| | - J. Hermisson
- Mathematics and Biosciences Group; Max F. Perutz Laboratories and Faculty of Mathematics; University of Vienna; Vienna Austria
| | - G. S. van Doorn
- Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| |
Collapse
|
30
|
Norvaišas P, Kisdi E. Revisiting Santa Rosalia to Unfold a Degeneracy of Classic Models of Speciation. Am Nat 2012; 180:388-93. [DOI: 10.1086/667215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Martin CH. Weak disruptive selection and incomplete phenotypic divergence in two classic examples of sympatric speciation: cameroon crater lake cichlids. Am Nat 2012; 180:E90-E109. [PMID: 22976018 DOI: 10.1086/667586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent documentation of a few compelling examples of sympatric speciation led to a proliferation of theoretical models. Unfortunately, plausible examples from nature have rarely been used to test model predictions, such as the initial presence of strong disruptive selection. Here I estimated the form and strength of selection in two classic examples of sympatric speciation: radiations of Cameroon cichlids restricted to Lakes Barombi Mbo and Ejagham. I measured five functional traits and relative growth rates in over 500 individuals within incipient species complexes from each lake. Disruptive selection was prevalent in both groups on single and multivariate trait axes but weak relative to stabilizing selection on other traits and most published estimates of disruptive selection. Furthermore, despite genetic structure, assortative mating, and bimodal species-diagnostic coloration, trait distributions were unimodal in both species complexes, indicating the earliest stages of speciation. Long waiting times or incomplete sympatric speciation may result when disruptive selection is initially weak. Alternatively, I present evidence of additional constraints in both species complexes, including weak linkage between coloration and morphology, reduced morphological variance aligned with nonlinear selection surfaces, and minimal ecological divergence. While other species within these radiations show complete phenotypic separation, morphological and ecological divergence in these species complexes may be slow or incomplete outside optimal parameter ranges, in contrast to rapid divergence of their sexual coloration.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, California 95616, USA.
| |
Collapse
|
32
|
Puebla O, Bermingham E, Guichard F. Pairing dynamics and the origin of species. Proc Biol Sci 2011; 279:1085-92. [PMID: 21937496 DOI: 10.1098/rspb.2011.1549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whether sexual selection alone can drive the evolution of assortative mating in the presence of gene flow is a long-standing question in evolutionary biology. Here, we report a role for pairing dynamics of individuals when mate choice is mutual, which is sufficient for the evolution of assortative mating by sexual selection alone in the presence of gene flow. Through behavioural observation, individual-based simulation and population genetic analysis, we evaluate the pairing dynamics of coral reef fish in the genus Hypoplectrus (Serranidae), and the role these dynamics can play for the evolution of assortative mating. When mate choice is mutual and the stability of mating pairs is critical for reproductive success, the evolution of assortative mating in the presence of gene flow is not only possible, but is also a robust evolutionary outcome.
Collapse
Affiliation(s)
- Oscar Puebla
- Smithsonian Tropical Research Institute, Panamá, República de Panamá.
| | | | | |
Collapse
|
33
|
Abstract
Hybridization is common in nature, even between "good" species. This observation poses the question of why reinforcement is not always successful in leading to the evolution of complete reproductive isolation. To study this question, we developed a new "quasi-linkage disequilibrium" (QLD) approximation to obtain the first analytic results for the evolution of modifiers that increase mate discrimination against hybrids and heterospecifics. When such modifiers have small effects, they evolve more readily under a one-allele than a two-allele mechanism (sensu Felsenstein 1981). The strength of selection on the modifier decreases as hybrids decrease in frequency, and so further reinforcement may not occur once hybridization is sufficiently rare. The outcome is qualitatively different when modifiers have large effects, however, for example, when a single mutation can cause complete reproductive isolation. In this case, modifiers in a two-allele mechanism can be selected as or more strongly than those in a one-allele mechanism. Furthermore, they can spread under quite general conditions. Thus, whether complete closure of genetic introgression by reinforcement occurs may depend on the size of effects that mutations have on the sensory systems used in mate choice.
Collapse
Affiliation(s)
- Claudia Bank
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| | | | | |
Collapse
|
34
|
Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 2011; 26:389-97. [PMID: 21592615 DOI: 10.1016/j.tree.2011.04.005] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
35
|
Servedio MR. Limits to the evolution of assortative mating by female choice under restricted gene flow. Proc Biol Sci 2011; 278:179-87. [PMID: 20685708 PMCID: PMC3013393 DOI: 10.1098/rspb.2010.1174] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/14/2010] [Indexed: 11/12/2022] Open
Abstract
The evolution of assortative mating is a key component of the process of speciation with gene flow. Several recent theoretical studies have pointed out, however, that sexual selection which can result from assortative mating may cause it to plateau at an intermediate level; this is primarily owing to search costs of individuals with extreme phenotypes and to assortative preferences developed by individuals with intermediate phenotypes. I explore the limitations of assortative mating further by analysing a simple model in which these factors have been removed. Specifically, I use a haploid two-population model to ask whether the existence of assortative mating is sufficient to drive the further evolution of assortative mating. I find that a weakening in the effective strength of sexual selection with strong assortment leads to the existence of both a peak level of trait differentiation and the evolution of an intermediate level of assortative mating that will cause that peak. This result is robust to the inclusion of local adaptation and different genetic architecture of the trait. The results imply the existence of fundamental limits to the evolution of assortment via sexual selection in this situation, with which other factors, such as search costs, may interact.
Collapse
Affiliation(s)
- Maria R Servedio
- Department of Biology, University of North Carolina, , CB No. 3280 Coker Hall, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Weissing FJ, Edelaar P, van Doorn GS. Adaptive speciation theory: a conceptual review. Behav Ecol Sociobiol 2011; 65:461-480. [PMID: 21423338 PMCID: PMC3038232 DOI: 10.1007/s00265-010-1125-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022]
Abstract
Speciation—the origin of new species—is the source of the diversity of life. A theory of speciation is essential to link poorly understood macro-evolutionary processes, such as the origin of biodiversity and adaptive radiation, to well understood micro-evolutionary processes, such as allele frequency change due to natural or sexual selection. An important question is whether, and to what extent, the process of speciation is ‘adaptive’, i.e., driven by natural and/or sexual selection. Here, we discuss two main modelling approaches in adaptive speciation theory. Ecological models of speciation focus on the evolution of ecological differentiation through divergent natural selection. These models can explain the stable coexistence of the resulting daughter species in the face of interspecific competition, but they are often vague about the evolution of reproductive isolation. Most sexual selection models of speciation focus on the diversification of mating strategies through divergent sexual selection. These models can explain the evolution of prezygotic reproductive isolation, but they are typically vague on questions like ecological coexistence. By means of an integrated model, incorporating both ecological interactions and sexual selection, we demonstrate that disruptive selection on both ecological and mating strategies is necessary, but not sufficient, for speciation to occur. To achieve speciation, mating must at least partly reflect ecological characteristics. The interaction of natural and sexual selection is also pivotal in a model where sexual selection facilitates ecological speciation even in the absence of diverging female preferences. In view of these results, it is counterproductive to consider ecological and sexual selection models as contrasting and incompatible views on speciation, one being dominant over the other. Instead, an integrative perspective is needed to achieve a thorough and coherent understanding of adaptive speciation.
Collapse
|
37
|
Rettelbach A, Hermisson J, Dieckmann U, Kopp M. Effects of genetic architecture on the evolution of assortative mating under frequency-dependent disruptive selection. Theor Popul Biol 2010; 79:82-96. [PMID: 21192962 DOI: 10.1016/j.tpb.2010.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 11/27/2022]
Abstract
We consider a model of sympatric speciation due to frequency-dependent competition, in which it was previously assumed that the evolving traits have a very simple genetic architecture. In the present study, we numerically analyze the consequences of relaxing this assumption. First, previous models assumed that assortative mating evolves in infinitesimal steps. Here, we show that the range of parameters for which speciation is possible increases when mutational steps are large. Second, it was assumed that the trait under frequency-dependent selection is determined by a single locus with two alleles and additive effects. As a consequence, the resultant intermediate phenotype is always heterozygous and can never breed true. To relax this assumption, here we add a second locus influencing the trait. We find three new possible evolutionary outcomes: evolution of three reproductively isolated species, a monomorphic equilibrium with only the intermediate phenotype, and a randomly mating population with a steep unimodal distribution of phenotypes. Both extensions of the original model thus increase the likelihood of competitive speciation.
Collapse
Affiliation(s)
- Agnes Rettelbach
- Evolution and Ecology Program, International Institute for Applied Systems and Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | | | |
Collapse
|
38
|
Kisdi É, Priklopil T. Evolutionary branching of a magic trait. J Math Biol 2010; 63:361-97. [DOI: 10.1007/s00285-010-0377-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 10/12/2010] [Indexed: 10/18/2022]
|
39
|
Peischl S, Schneider KA. EVOLUTION OF DOMINANCE UNDER FREQUENCY-DEPENDENT INTRASPECIFIC COMPETITION IN AN ASSORTATIVELY MATING POPULATION. Evolution 2010; 64:561-82. [DOI: 10.1111/j.1558-5646.2009.00839.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
|
41
|
Hendry AP, Bolnick DI, Berner D, Peichel CL. Along the speciation continuum in sticklebacks. JOURNAL OF FISH BIOLOGY 2009; 75:2000-2036. [PMID: 20738669 DOI: 10.1111/j.1095-8649.2009.02419.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Speciation can be viewed as a continuum, potentially divisible into several states: (1) continuous variation within panmictic populations, (2) partially discontinuous variation with minor reproductive isolation, (3) strongly discontinuous variation with strong but reversible reproductive isolation and (4) complete and irreversible reproductive isolation. Research on sticklebacks (Gasterosteidae) reveals factors that influence progress back and forth along this continuum, as well as transitions between the states. Most populations exist in state 1, even though some of these show evidence of disruptive selection and positive assortative mating. Transitions to state 2 seem to usually involve strong divergent selection coupled with at least a bit of geographic separation, such as parapatry (e.g. lake and stream pairs and mud and lava pairs) or allopatry (e.g. different lakes). Transitions to state 3 can occur when allopatric or parapatric populations that evolved under strong divergent selection come into secondary contact (most obviously the sympatric benthic and limnetic pairs), but might also occur between populations that remained in parapatry or allopatry. Transitions to state 4 might be decoupled from these selective processes, because the known situations of complete, or nearly complete, reproductive isolation (Japan Sea and Pacific Ocean pair and the recognized gasterosteid species) are always associated with chromosomal rearrangements and environment-independent genetic incompatibilities. Research on sticklebacks has thus revealed complex and shifting interactions between selection, adaptation, mutation and geography during the course of speciation.
Collapse
Affiliation(s)
- A P Hendry
- Redpath Museum & Department of Biology, McGill University, 859 Sherbrooke St. W., Montréal, Québec, H3A 2K6 Canada.
| | | | | | | |
Collapse
|
42
|
SADEDIN S, HOLLANDER J, PANOVA M, JOHANNESSON K, GAVRILETS S. Case studies and mathematical models of ecological speciation. 3: Ecotype formation in a Swedish snail. Mol Ecol 2009; 18:4006-23. [DOI: 10.1111/j.1365-294x.2009.04320.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Abstract
Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for molecular approaches to address specific questions related to the ecological hypothesis of speciation such as the nature of the genes underlying key ecological traits, the magnitude of their effect on phenotype and the mechanisms underlying their differential expression in different ecological contexts. The potential provided by molecular studies is fully realized when they are complemented with alternative (e.g. ecological, theoretical) approaches.
Collapse
Affiliation(s)
- O Puebla
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama.
| |
Collapse
|
44
|
Kisdi E, Geritz SAH. Adaptive dynamics: a framework to model evolution in the ecological theatre. J Math Biol 2009; 61:165-9. [PMID: 19777234 DOI: 10.1007/s00285-009-0300-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Kisdi
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
45
|
Durinx M, Van Dooren TJM. ASSORTATIVE MATE CHOICE AND DOMINANCE MODIFICATION: ALTERNATIVE WAYS OF REMOVING HETEROZYGOTE DISADVANTAGE. Evolution 2009; 63:334-52. [DOI: 10.1111/j.1558-5646.2008.00578.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Maintenance of host variation in tolerance to pathogens and parasites. Proc Natl Acad Sci U S A 2008; 105:20786-91. [PMID: 19088200 DOI: 10.1073/pnas.0809558105] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolerance and resistance provide hosts with two distinct defense strategies against parasitism. In resistance the hosts "fight" the parasite directly, whereas in tolerance the hosts fight the disease by ameliorating the damage that infection causes. There is increasing recognition that the two mechanisms may exhibit very different evolutionary behaviors. Although empirical work has often noted considerable variance in tolerance within hosts, theory has predicted the fixation of tolerance due to positive frequency dependence through a feedback with disease prevalence. Here we reconcile these findings through a series of dynamic game theoretical models. We emphasize that there is a crucial distinction between tolerance to the effects of disease-induced mortality and tolerance to the effect of the disease-induced reductions in fecundity. Only mortality tolerance has a positive effect on parasite fitness, whereas sterility tolerance is neutral and may therefore result in polymorphisms. The nature of the costs to defense and their relationship to trade-offs between resistance and tolerance are crucial in determining the likelihood of variation, whereas the co-evolution of the parasite will not affect diversity. Our findings stress that it is important to measure the effects of different mechanisms on characteristics that affect the epidemiology of the parasite to completely understand the evolutionary dynamics of defense.
Collapse
|
47
|
Butlin RK, Galindo J, Grahame JW. Review. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci 2008; 363:2997-3007. [PMID: 18522915 DOI: 10.1098/rstb.2008.0076] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The most common classification of modes of speciation begins with the spatial context in which divergence occurs: sympatric, parapatric or allopatric. This classification is unsatisfactory because it divides a continuum into discrete categories, concentrating attention on the extremes, and it subordinates other dimensions on which speciation processes vary, such as the forces driving differentiation and the genetic basis of reproductive isolation. It also ignores the fact that speciation is a prolonged process that commonly has phases in different spatial contexts. We use the example of local adaptation and partial reproductive isolation in the intertidal gastropod Littorina saxatilis to illustrate the inadequacy of the spatial classification of speciation modes. Parallel divergence in shell form in response to similar environmental gradients in England, Spain and Sweden makes this an excellent model system. However, attempts to demonstrate 'incipient' and 'sympatric' speciation involve speculation about the future and the past. We suggest that it is more productive to study the current balance between local adaptation and gene flow, the interaction between components of reproductive isolation and the genetic basis of differentiation.
Collapse
Affiliation(s)
- Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
48
|
When is sympatric speciation truly adaptive? An analysis of the joint evolution of resource utilization and assortative mating. Evol Ecol 2008. [DOI: 10.1007/s10682-008-9267-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Affiliation(s)
- M Kopp
- Section of Evolutionary Biology, Department Biology II, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany.
| | | |
Collapse
|
50
|
de Cara MAR, Barton NH, Kirkpatrick M. A Model for the Evolution of Assortative Mating. Am Nat 2008; 171:580-96. [PMID: 18419568 DOI: 10.1086/587062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- M A R de Cara
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | |
Collapse
|