Thomele D, Bourret GR, Bernardi J, Bockstedte M, Diwald O. Hydroxylation Induced Alignment of Metal Oxide Nanocubes.
Angew Chem Int Ed Engl 2016;
56:1407-1410. [PMID:
28005313 DOI:
10.1002/anie.201608538]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/27/2016] [Indexed: 01/03/2023]
Abstract
Water vapor is ubiquitous under ambient conditions and may alter the shape of nanoparticles. How to utilize water adsorption for nanomaterial functionality and structure formation, however, is a yet unexplored field. Herein, we report the use of water vapor to induce the self-organization of MgO nanocubes into regularly staggered one-dimensional structures. This transformation evolves via an initial alignment of the MgO cubes, the formation of intermediate elongated Mg(OH)2 structures, and their reconversion into MgO cubes arranged in staggered structures. Ab initio DFT modelling identifies surface-energy changes associated with the cube surface hydration and hydroxylation to promote the uncommon staggered stacked assembly of the cubes. This first observation of metal oxide nanoparticle self-organization occurring outside a bulk solution may pave novel routes for inducing texture in ceramics and represents a great test-bed for new surface-science concepts.
Collapse